scholarly journals Faculty Opinions recommendation of Gα13 ablation reprograms myofibers to oxidative phenotype and enhances whole-body metabolism.

Author(s):  
Yin Hua Zhang
2017 ◽  
Vol 127 (10) ◽  
pp. 3845-3860 ◽  
Author(s):  
Ja Hyun Koo ◽  
Tae Hyun Kim ◽  
Shi-Young Park ◽  
Min Sung Joo ◽  
Chang Yeob Han ◽  
...  

2019 ◽  
Vol 133 (22) ◽  
pp. 2317-2327 ◽  
Author(s):  
Nicolás Gómez-Banoy ◽  
James C. Lo

Abstract The growing prevalence of obesity and its related metabolic diseases, mainly Type 2 diabetes (T2D), has increased the interest in adipose tissue (AT) and its role as a principal metabolic orchestrator. Two decades of research have now shown that ATs act as an endocrine organ, secreting soluble factors termed adipocytokines or adipokines. These adipokines play crucial roles in whole-body metabolism with different mechanisms of action largely dependent on the tissue or cell type they are acting on. The pancreatic β cell, a key regulator of glucose metabolism due to its ability to produce and secrete insulin, has been identified as a target for several adipokines. This review will focus on how adipokines affect pancreatic β cell function and their impact on pancreatic β cell survival in disease contexts such as diabetes. Initially, the “classic” adipokines will be discussed, followed by novel secreted adipocyte-specific factors that show therapeutic promise in regulating the adipose–pancreatic β cell axis.


GeroScience ◽  
2021 ◽  
Author(s):  
Haihui Zhuang ◽  
Sira Karvinen ◽  
Timo Törmäkangas ◽  
Xiaobo Zhang ◽  
Xiaowei Ojanen ◽  
...  

AbstractAerobic capacity is a strong predictor of longevity. With aging, aerobic capacity decreases concomitantly with changes in whole body metabolism leading to increased disease risk. To address the role of aerobic capacity, aging, and their interaction on metabolism, we utilized rat models selectively bred for low and high intrinsic aerobic capacity (LCRs/HCRs) and compared the metabolomics of serum, muscle, and white adipose tissue (WAT) at two time points: Young rats were sacrificed at 9 months of age, and old rats were sacrificed at 21 months of age. Targeted and semi-quantitative metabolomics analysis was performed on the ultra-pressure liquid chromatography tandem mass spectrometry (UPLC-MS) platform. The effects of aerobic capacity, aging, and their interaction were studied via regression analysis. Our results showed that high aerobic capacity is associated with an accumulation of isovalerylcarnitine in muscle and serum at rest, which is likely due to more efficient leucine catabolism in muscle. With aging, several amino acids were downregulated in muscle, indicating more efficient amino acid metabolism, whereas in WAT less efficient amino acid metabolism and decreased mitochondrial β-oxidation were observed. Our results further revealed that high aerobic capacity and aging interactively affect lipid metabolism in muscle and WAT, possibly combating unfavorable aging-related changes in whole body metabolism. Our results highlight the significant role of WAT metabolism for healthy aging.


2021 ◽  
Author(s):  
Diana Abu Halaka ◽  
Ofer Gover ◽  
Einat Rauchbach ◽  
Shira Zelber-Sagi ◽  
Betty Schwartz ◽  
...  

Nitrites and nitrates are traditional food additives used as curing agents in the food industry. They inhibit the growth of microorganisms and convey a typical pink color to the meat....


2003 ◽  
Vol 23 (3) ◽  
pp. 1085-1094 ◽  
Author(s):  
Leanne Wilson-Fritch ◽  
Alison Burkart ◽  
Gregory Bell ◽  
Karen Mendelson ◽  
John Leszyk ◽  
...  

ABSTRACT White adipose tissue is an important endocrine organ involved in the control of whole-body metabolism, insulin sensitivity, and food intake. To better understand these functions, 3T3-L1 cell differentiation was studied by using combined proteomic and genomic strategies. The proteomics approach developed here exploits velocity gradient centrifugation as an alternative to isoelectric focusing for protein separation in the first dimension. A 20- to 30-fold increase in the concentration of numerous mitochondrial proteins was observed during adipogenesis, as determined by mass spectrometry and database correlation analysis. Light and electron microscopy confirmed a large increase in the number of mitochondrion profiles with differentiation. Furthermore, mRNA profiles obtained by using Affymetrix GeneChips revealed statistically significant increases in the expression of many nucleus-encoded mitochondrial genes during adipogenesis. Qualitative changes in mitochondrial composition also occur during adipose differentiation, as exemplified by increases in expression of proteins involved in fatty acid metabolism and of mitochondrial chaperones. Furthermore, the insulin sensitizer rosiglitazone caused striking changes in mitochondrial shape and expression of selective mitochondrial proteins. Thus, although mitochondrial biogenesis has classically been associated with brown adipocyte differentiation and thermogenesis, our results reveal that mitochondrial biogenesis and remodeling are inherent to adipose differentiation per se and are influenced by the actions of insulin sensitizers.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Xiaoli Shen ◽  
Lina Huang ◽  
Dahui Ma ◽  
Jun Zhao ◽  
Yi Xie ◽  
...  

Ultrasound microbubble combined optic protection drugs have obvious protective effect on optic nerve damage. This way of targeting drug delivery is becoming more simple, not through the whole body metabolism, avoiding drug via blood circulation when facing the decomposition and the environment in the interference and destruction process of drugs, to maximize the guarantee to reach target organs of drug concentration and to reache the maximum therapeutic effect. The technique of ultrasound microbubbles is safe, controllable, nonimmunogenic, and repeatable. It provides us with a novel idea in the administration of neuroprotective drugs.


Science ◽  
2021 ◽  
Vol 373 (6551) ◽  
pp. 223-225
Author(s):  
Traver Wright ◽  
Randall W. Davis ◽  
Heidi C. Pearson ◽  
Michael Murray ◽  
Melinda Sheffield-Moore

Basal metabolic rate generally scales with body mass in mammals, and variation from predicted levels indicates adaptive metabolic remodeling. As a thermogenic adaptation for living in cool water, sea otters have a basal metabolic rate approximately three times that of the predicted rate; however, the tissue-level source of this hypermetabolism is unknown. Because skeletal muscle is a major determinant of whole-body metabolism, we characterized respiratory capacity and thermogenic leak in sea otter muscle. Compared with that of previously sampled mammals, thermogenic muscle leak capacity was elevated and could account for sea otter hypermetabolism. Muscle respiratory capacity was modestly elevated and reached adult levels in neonates. Premature metabolic development and high leak rate indicate that sea otter muscle metabolism is regulated by thermogenic demand and is the source of basal hypermetabolism.


Sign in / Sign up

Export Citation Format

Share Document