scholarly journals Faculty Opinions recommendation of Epithelial colonies in vitro elongate through collective effects.

Author(s):  
Dan Bergstralh ◽  
Tara Finegan
Keyword(s):  
Author(s):  
Juan R. Cebral ◽  
Orlando Soto ◽  
Robert J. Lutz ◽  
Bradford J. Wood

The efficacy of radiofrequency ablation (RFA) treatments depends on the ability to ablate tumors completely while minimizing the damage to healthy tissue. Tissue cooling due to blood flow is an important factor affecting the size and shape of the ablation lesion. In this paper a new methodology for finite element modeling of the coupled electrical-thermal-flow process during RFA is presented. Our formulation treats heat losses due to blood flow explicitly rather than approximating the collective effects of blood vessles as a heat sink. Numerical models were compared to in vitro models using egg whites to simulate human tissue and a straight cylinder filled with a saline solution to simulate blood. Asymmetric burns were obtained close to the simulated blood vessels. Numerical results closely match the in vitro models.


2019 ◽  
Vol 17 (02) ◽  
pp. 1950012 ◽  
Author(s):  
Ali Cuvitoglu ◽  
Joseph X. Zhou ◽  
Sui Huang ◽  
Zerrin Isik

Identification of effective drug combinations for patients is an expensive and time-consuming procedure, especially for in vitro experiments. To accelerate the synergistic drug discovery process, we present a new classification model to identify more effective anti-cancer drug pairs using in silico network biology approach. Based on the hypotheses that the drug synergy comes from the collective effects on the biological network, therefore, we developed six network biology features, including overlap and distance of drug perturbation network, that were derived by using individual drug-perturbed transcriptome profiles and the relevant biological network analysis. Using publicly available drug synergy databases and three machine-learning (ML) methods, the model was trained to discriminate the positive (synergistic) and negative (nonsynergistic) drug combinations. The proposed models were evaluated on the test cases to predict the most promising network biology feature, which is the network degree activity, i.e. the synergistic effect between drug pairs is mainly accounted by the complementary signaling pathways or molecular networks from two drugs.


Microbiology ◽  
2010 ◽  
Vol 156 (2) ◽  
pp. 392-399 ◽  
Author(s):  
Jennifer L. Patterson ◽  
Annica Stull-Lane ◽  
Philippe H. Girerd ◽  
Kimberly K. Jefferson

Worldwide, bacterial vaginosis (BV) is the most common vaginal disorder in women of childbearing age. BV is characterized by a dramatic shift in the vaginal microflora, involving a relative decrease in lactobacilli, and a proliferation of anaerobes. In most cases of BV, the predominant bacterial species found is Gardnerella vaginalis. However, pure cultures of G. vaginalis do not always result in BV, and asymptomatic women are sometimes colonized with low numbers of G. vaginalis. Thus, there is controversy about whether G. vaginalis is an opportunistic pathogen and the causative agent of many cases of BV, or whether BV is a polymicrobial condition caused by the collective effects of an altered microbial flora. Recent studies of the biofilm-forming potential and cytotoxic activity of G. vaginalis have renewed interest in the virulence potential of this organism. In an effort to tease apart the aetiology of this disorder, we utilized in vitro assays to compare three virulence properties of G. vaginalis relative to other BV-associated anaerobes. We designed a viable assay to analyse bacterial adherence to vaginal epithelial cells, we compared biofilm-producing capacities, and we assessed cytotoxic activity. Of the BV-associated anaerobes tested, only G. vaginalis demonstrated all three virulence properties combined. This study suggests that G. vaginalis is more virulent than other BV-associated anaerobes, and that many of the bacterial species frequently isolated from BV may be relatively avirulent opportunists that colonize the vagina after G. vaginalis has initiated an infection.


2019 ◽  
Author(s):  
Jordi Comelles ◽  
SS Soumya ◽  
Linjie Lu ◽  
Emilie Le Maout ◽  
S. Anvitha ◽  
...  

AbstractEpithelial tissues of the developing embryos elongate by different mechanisms, such as neighbor exchange, cell elongation, and oriented cell division. Since autonomous tissue self-organization is influenced by external cues such as morphogen gradients or neighboring tissues, it is difficult to distinguish intrinsic from directed tissue behavior. The mesoscopic processes leading to the different mechanisms remain elusive. Here, we study the spontaneous elongation behavior of spreading circular epithelial colonies in vitro. By quantifying deformation kinematics at multiple scales, we report that global elongation happens primarily due to cell elongations, and its direction correlates with the anisotropy of the average cell elongation. By imposing an external time-periodic stretch, the axis of this global symmetry breaking can be modified and elongation occurs primarily due to orientated neighbor exchange. These different behaviors are confirmed using a vertex model for collective cell behavior, providing a framework for understanding autonomous tissue elongation and its origins.


2020 ◽  
Vol 117 (23) ◽  
pp. 12847-12855
Author(s):  
Göker Arpağ ◽  
Elizabeth J. Lawrence ◽  
Veronica J. Farmer ◽  
Sarah L. Hall ◽  
Marija Zanic

Microtubule network remodeling is essential for fundamental cellular processes including cell division, differentiation, and motility. Microtubules are active biological polymers whose ends stochastically and independently switch between phases of growth and shrinkage. Microtubule treadmilling, in which the microtubule plus end grows while the minus end shrinks, is observed in cells; however, the underlying mechanisms are not known. Here, we use a combination of computational and in vitro reconstitution approaches to determine the conditions leading to robust microtubule treadmilling. We find that microtubules polymerized from tubulin alone can treadmill, albeit with opposite directionality and order-of-magnitude slower rates than observed in cells. We then employ computational simulations to predict that the combinatory effects of four microtubule-associated proteins (MAPs), namely EB1, XMAP215, CLASP2, and MCAK, can promote fast and sustained plus-end-leading treadmilling. Finally, we experimentally confirm the predictions of our computational model using a multi-MAP, in vitro microtubule dynamics assay to reconstitute robust plus-end-leading treadmilling, consistent with observations in cells. Our results demonstrate how microtubule dynamics can be modulated to achieve a dynamic balance between assembly and disassembly at opposite polymer ends, resulting in treadmilling over long periods of time. Overall, we show how the collective effects of multiple components give rise to complex microtubule behavior that may be used for global network remodeling in cells.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jordi Comelles ◽  
Soumya S S ◽  
Linjie Lu ◽  
Emilie Le-Maout ◽  
Sudakar Anvitha ◽  
...  

Epithelial tissues of the developing embryos elongate by different mechanisms, such as neighbor exchange, cell elongation, and oriented cell division. Since autonomous tissue self-organization is influenced by external cues such as morphogen gradients or neighboring tissues, it is difficult to distinguish intrinsic from directed tissue behavior. The mesoscopic processes leading to the different mechanisms remain elusive. Here, we study the spontaneous elongation behavior of spreading circular epithelial colonies in vitro. By quantifying deformation kinematics at multiple scales, we report that global elongation happens primarily due to cell elongations, and its direction correlates with the anisotropy of the average cell elongation. By imposing an external time-periodic stretch, the axis of this global symmetry breaking can be modified and elongation occurs primarily due to orientated neighbor exchange. These different behaviors are confirmed using a vertex model for collective cell behavior, providing a framework for understanding autonomous tissue elongation and its origins.


2012 ◽  
Vol 9 (77) ◽  
pp. 3268-3278 ◽  
Author(s):  
Alexandre J. Kabla

A number of biological processes, such as embryo development, cancer metastasis or wound healing, rely on cells moving in concert. The mechanisms leading to the emergence of coordinated motion remain however largely unexplored. Although biomolecular signalling is known to be involved in most occurrences of collective migration, the role of physical and mechanical interactions has only been recently investigated. In this study, a versatile framework for cell motility is implemented in silico in order to study the minimal requirements for the coordination of a group of epithelial cells. We find that cell motility and cell–cell mechanical interactions are sufficient to generate a broad array of behaviours commonly observed in vitro and in vivo . Cell streaming, sheet migration and susceptibility to leader cells are examples of behaviours spontaneously emerging from these simple assumptions, which might explain why collective effects are so ubiquitous in nature. The size of the population and its confinement appear, in particular, to play an important role in the coordination process. In all cases, the complex response of the population can be predicted from the knowledge of the correlation length of the velocity field measured in the bulk of the epithelial layer. This analysis provides also new insights into cancer metastasis and cell sorting, suggesting, in particular, that collective invasion might result from an emerging coordination in a system where single cells are mechanically unable to invade.


Author(s):  
P.L. Moore

Previous freeze fracture results on the intact giant, amoeba Chaos carolinensis indicated the presence of a fibrillar arrangement of filaments within the cytoplasm. A complete interpretation of the three dimensional ultrastructure of these structures, and their possible role in amoeboid movement was not possible, since comparable results could not be obtained with conventional fixation of intact amoebae. Progress in interpreting the freeze fracture images of amoebae required a more thorough understanding of the different types of filaments present in amoebae, and of the ways in which they could be organized while remaining functional.The recent development of a calcium sensitive, demembranated, amoeboid model of Chaos carolinensis has made it possible to achieve a better understanding of such functional arrangements of amoeboid filaments. In these models the motility of demembranated cytoplasm can be controlled in vitro, and the chemical conditions necessary for contractility, and cytoplasmic streaming can be investigated. It is clear from these studies that “fibrils” exist in amoeboid models, and that they are capable of contracting along their length under conditions similar to those which cause contraction in vertebrate muscles.


Author(s):  
John J. Wolosewick ◽  
John H. D. Bryan

Early in spermiogenesis the manchette is rapidly assembled in a distal direction from the nuclear-ring-densities. The association of vesicles of smooth endoplasmic reticulum (SER) and the manchette microtubules (MTS) has been reported. In the mouse, osmophilic densities at the distal ends of the manchette are the organizing centers (MTOCS), and are associated with the SER. Rapid MT assembly and the lack of rough ER suggests that there is an existing pool of MT protein. Colcemid potentiates the reaction of vinblastine with tubulin and was used in this investigation to detect this protein.


Author(s):  
E. J. Kollar

The differentiation and maintenance of many specialized epithelial structures are dependent on the underlying connective tissue stroma and on an intact basal lamina. These requirements are especially stringent in the development and maintenance of the skin and oral mucosa. The keratinization patterns of thin or thick cornified layers as well as the appearance of specialized functional derivatives such as hair and teeth can be correlated with the specific source of stroma which supports these differentiated expressions.


Sign in / Sign up

Export Citation Format

Share Document