Faculty Opinions recommendation of Kallikrein directly interacts with and activates Factor IX, resulting in thrombin generation and fibrin formation independent of Factor XI.

Author(s):  
Toshiyuki Miyata
Blood ◽  
2009 ◽  
Vol 114 (2) ◽  
pp. 452-458 ◽  
Author(s):  
Dmitri V. Kravtsov ◽  
Anton Matafonov ◽  
Erik I. Tucker ◽  
Mao-fu Sun ◽  
Peter N. Walsh ◽  
...  

Abstract During surface-initiated blood coagulation in vitro, activated factor XII (fXIIa) converts factor XI (fXI) to fXIa. Whereas fXI deficiency is associated with a hemorrhagic disorder, factor XII deficiency is not, suggesting that fXI can be activated by other mechanisms in vivo. Thrombin activates fXI, and several studies suggest that fXI promotes coagulation independent of fXII. However, a recent study failed to find evidence for fXII-independent activation of fXI in plasma. Using plasma in which fXII is either inhibited or absent, we show that fXI contributes to plasma thrombin generation when coagulation is initiated with low concentrations of tissue factor, factor Xa, or α-thrombin. The results could not be accounted for by fXIa contamination of the plasma systems. Replacing fXI with recombinant fXI that activates factor IX poorly, or fXI that is activated poorly by thrombin, reduced thrombin generation. An antibody that blocks fXIa activation of factor IX reduced thrombin generation; however, an antibody that specifically interferes with fXI activation by fXIIa did not. The results support a model in which fXI is activated by thrombin or another protease generated early in coagulation, with the resulting fXIa contributing to sustained thrombin generation through activation of factor IX.


2021 ◽  
Vol 118 (3) ◽  
pp. e2014810118
Author(s):  
Katherine J. Kearney ◽  
Juliet Butler ◽  
Olga M. Posada ◽  
Clare Wilson ◽  
Samantha Heal ◽  
...  

Kallikrein (PKa), generated by activation of its precursor prekallikrein (PK), plays a role in the contact activation phase of coagulation and functions in the kallikrein-kinin system to generate bradykinin. The general dogma has been that the contribution of PKa to the coagulation cascade is dependent on its action on FXII. Recently this dogma has been challenged by studies in human plasma showing thrombin generation due to PKa activity on FIX and also by murine studies showing formation of FIXa-antithrombin complexes in FXI deficient mice. In this study, we demonstrate high-affinity binding interactions between PK(a) and FIX(a) using surface plasmon resonance and show that these interactions are likely to occur under physiological conditions. Furthermore, we directly demonstrate dose- and time-dependent cleavage of FIX by PKa in a purified system by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and chromogenic assays. By using normal pooled plasma and a range of coagulation factor-deficient plasmas, we show that this action of PKa on FIX not only results in thrombin generation, but also promotes fibrin formation in the absence of FXII or FXI. Comparison of the kinetics of either FXIa- or PKa-induced activation of FIX suggest that PKa could be a significant physiological activator of FIX. Our data indicate that the coagulation cascade needs to be redefined to indicate that PKa can directly activate FIX. The circumstances that drive PKa substrate specificity remain to be determined.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3082-3082 ◽  
Author(s):  
Anton Matafonov ◽  
Dmitri Kravtsov ◽  
Erik I. Tucker ◽  
Mao-fu Sun ◽  
John P. Sheehan ◽  
...  

Abstract Factor XI (fXI) is the zymogen of a plasma protease (fXIa) that contributes to coagulation by activating factor IX. The mechanism by which fXI is converted to fXIa in plasma has been a topic of recent debate. When plasma is exposed to a charged surface, factor XII (fXII) is converted to fXIIa, which then activates fXI. The importance of this reaction to hemostasis in vivo is questionable, as fXII deficiency does not cause abnormal bleeding. This suggests that fXI can be activated by other proteases, with α-thrombin receiving considerable attention in this regard. Results from several laboratories support a model in which α-thrombin activates fXI to propagate coagulation. This notion has been challenged by a recent study that found no direct evidence of fXI activation by α-thrombin in plasma and that fXI activation during plasma preparation can give the false impression that fXI is activated independent of fXIIa. We developed two plasma systems to examine thrombin generation (measured by calibrated automated thrombography) in the absence of fXII, with due consideration to the possibility that traces of fXIa can affect results. In the first system, fXI deficient plasma is initially treated with corn trypsin inhibitor to neutralize fXIIa, and then supplemented with fXI treated previously with DFP to neutralize contaminating fXIa. The second system uses fXII deficient plasma, and endogenous fXI is neutralized with an antibody if a fXI deficient state is required. Coagulation is initiated in both systems by addition of Ca2+ with or without tissue factor (TF - <10 pM), α-thrombin (5 nM), or factor Xa (6 pM). In both systems, significant thrombin generation was detected only in the presence of fXI, and required TF, α-thrombin, or factor Xa. Ca2+ alone did not stimulate thrombin generation. Thrombin generation was detected in fXI deficient plasma stimulated with as little as 3.0 pM fXIa. However, only 0.3 pM fXIa was required to induce thrombin generation if fXI was present, indicating additional fXIa is generated after addition of the fXIa trigger. The fXI deficient plasma system was not reconstituted by fXI variants defective in factor IX activation, nor by a fXI variant that is activated poorly by α-thrombin but normally by fXIIa. The results support a model in which fXI is activated in plasma by thrombin, with fXIa subsequently contributing to additional thrombin generation through factor IX activation. α-thrombin generated early in these reactions could promote subsequent thrombin generation through activation of factors V and VIII, as well as conversion of fibrinogen to fibrin. These reactions involve interactions with anion binding exosite I (ABE-I) on α-thrombin. When thrombin with a dysfunctional ABE-I (β-thrombin or α-thrombin with ABE-I mutations) were tested in the plasma systems, fXI-dependent thrombin generation was actually greater, and occurred earlier, than in the same system stimulated with α-thrombin. Studies with purified proteins and SDS-PAGE showed that β-thrombin and the ABE-I mutants convert fXI to fXIa similarly to α-thrombin. α-thrombin was also able to activate fXI in the presence of the ABE-I blocking peptide hirugen. β-thrombin and the exosite I mutants may promote fXI-dependent thrombin generation in plasma better than α-thrombin because there is no competition from fibrinogen. The different behavior of α-thrombin compared to β-thrombin and the ABE-I mutants supports the broader concept that thrombin activates fXI in plasma, and indicates that fXI activation by thrombin does not require ABE-I. Natural products of prothrombin activation lacking ABE-I, such as β-thrombin, therefore, may contribute to factor XI activation in plasma.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2244-2244
Author(s):  
Anton Matafonov ◽  
Qiufang Cheng ◽  
Ingrid M. Verhamme ◽  
Obi Umunakwe ◽  
Erik I. Tucker ◽  
...  

Abstract Abstract 2244 In the widely used activated partial thromboplastin time (aPTT) assay, fibrin formation is induced by a series of sequential activations of the plasma protease zymogens factor (f) XII, fXI, fIX, fX and prothrombin, in that order. Conversion of prothrombin to the protease α-thrombin results in fibrin formation. α-Thrombin also enhances its own generation through activation of the cofactors fV and fVIII. While the linear sequence of reactions in the aPTT implies that loss of any single protease should have a comparable deleterious effect on the system, it is recognized that complete deficiency of a protein near the start of the sequence (e.g. fXII or fXI) results in greater aPTT prolongation than deficiency of proteins further down the sequence (e.g. fIX). This implies that proteases activated early in the process have multiple plasma substrates. For example, fXIa was recently reported to activate fVIII and fV (JTH 8;1532:2010), in addition to its role in fIX activation. Here, we present evidence that fXIa contributes to α-thrombin generation in the absence of fIX through activation of fX and/or fV. We noted that an anti-fXI antibody (O1A6) prolonged the aPTT of plasma from a patient with severe hemophilia B (fIX antigen undetectable) or plasma immunodepleted of fIX. This observation held even when an anti-fIX antibody was added to neutralize potential traces of fIX. Addition of activated fXI (fXIa - 3 nM) directly to fIX-deficient recalcified plasmas induced clot formation, and the time to clot formation was prolonged by O1A6. To further exclude the possibility that traces of fIX were contributing to thrombin generation, we confirmed the results using plasma from mice with combined complete deficiencies of fXII, fXI, and fIX. We tested the capacity of fXIa to cleave/activate fX and fV, the protease zymogen and cofactor, respectively, immediately downstream of fIX in the coagulation cascade. FX, the zymogen of the protease fXa, is evolutionarily related to fIX. SDS-PAGE analysis confirmed that fXIa cleaves fX. FX cleaved by fXIa demonstrated fXa activity in a chromogenic substrate assay, and converted prothrombin to α-thrombin in the presence of fVa and phospholipid. As previously reported, fXIa readily cleaved fV. The cleavage pattern differed from that generated by α-thrombin, however, formation of the fVa light chain was clearly evident. In a plasma clotting assay designed to measure either fXa or fVa activity, fX or fV pre-incubated with fXIa significantly shortened the clotting time of fIX-deficient plasma, while fX or fV pre-incubated with vehicle did not. In thrombin generation assays, fXIa (1.25 to 15 nM) induced thrombin generation in fIX-deficient plasma supplemented with anti-fIX antibody in a concentration dependent manner. FXIa did not induce thrombin generation in plasma lacking fV, or in fIX-deficient plasma containing the fXa inhibitor apixaban. This indicates that fXIa is working at the level of fX/fV in this assay, and is not directly converting prothrombin to α-thrombin. A recombinant variant of fXIa lacking the major fIX-binding exosite (fXIaPKA3, J Biol Chem 1996;271:29023) demonstrated a marked defect, compared to wild type fXIa (fXIaWT), in its capacity to induce thrombin generation in normal plasma. However, in fIX-deficient plasma, fXIaPKA3 and fXIaWT are comparable in their ability to enhance thrombin generation, supporting the premise that fXIa is acting through activation of fX and/or fV in the absence of fIX. Previously, we observed that fXI deficient mice and fIX deficient mice are comparably resistant to carotid artery thrombosis induced by exposure of the vessel to ferric chloride, despite having very different propensities to bleed. The animals were uniformly resistant to thrombosis with 5% FeCl3, and some were resistant at 7.5% FeCl3. All experienced vessel occlusion with 10% FeCl3. This is consistent with fXIa contributing to thrombosis in this model through fIX activation. However, we observed that some mice with combined fIX and fXI deficiency were resistant to FeCl3 concentrations up to 12.5%, implying that fXIa was contributing to thrombosis in a fIX-independent manner, as well. These results are consistent with those from the in vitro assays described above, and support the hypothesis that fXIa contributes to thrombin generation through fIX-dependent and fIX-independent processes. Disclosures: Tucker: Aronora, LLC: Employment, Equity Ownership. Gruber:Aronora, LLC: Consultancy, Equity Ownership.


1998 ◽  
Vol 80 (08) ◽  
pp. 233-238 ◽  
Author(s):  
K. A. Mitropoulos ◽  
M. N. Nanjee ◽  
D. J. Howarth ◽  
J. C. Martin ◽  
M. P. Esnouf ◽  
...  

SummaryAbetalipoproteinaemia is a rare disorder of apolipoprotein B metabolism associated with extremely low plasma concentrations of triglyce-ride. To discover whether the general positive association between factor VII and triglyceride levels extends to this condition, 5 patients were compared with 18 controls. All patients had a triglyceride below 100 μmol/l. Plasma unesterified fatty acid concentration was normal. Although factor IX activity was only slightly reduced (mean 88% standard) and factor IX antigen was normal, mean activated factor VII in patients was strikingly reduced to 34% of that in controls, a level similar to that found in haemophilia B. The patients’ mean factor VII activity and factor VII antigen were also significantly reduced to 54% and 63% of those in controls, respectively. Mean factor XI activity and tissue factor pathway inhibitor activity were reduced in patients to 70% and 75% of control values respectively, while factor XII, factor XI antigen, factor X, prothrombin and protein C were normal.


Blood ◽  
2010 ◽  
Vol 115 (13) ◽  
pp. 2569-2577 ◽  
Author(s):  
Jonas Emsley ◽  
Paul A. McEwan ◽  
David Gailani

AbstractFactor XI (FXI) is the zymogen of an enzyme (FXIa) that contributes to hemostasis by activating factor IX. Although bleeding associated with FXI deficiency is relatively mild, there has been resurgence of interest in FXI because of studies indicating it makes contributions to thrombosis and other processes associated with dysregulated coagulation. FXI is an unusual dimeric protease, with structural features that distinguish it from vitamin K–dependent coagulation proteases. The recent availability of crystal structures for zymogen FXI and the FXIa catalytic domain have enhanced our understanding of structure-function relationships for this molecule. FXI contains 4 “apple domains” that form a disk structure with extensive interfaces at the base of the catalytic domain. The characterization of the apple disk structure, and its relationship to the catalytic domain, have provided new insight into the mechanism of FXI activation, the interaction of FXIa with the substrate factor IX, and the binding of FXI to platelets. Analyses of missense mutations associated with FXI deficiency have provided additional clues to localization of ligand-binding sites on the protein surface. Together, these data will facilitate efforts to understand the physiology and pathology of this unusual protease, and development of therapeutics to treat thrombotic disorders.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 17-17
Author(s):  
Dougald Monroe ◽  
Mirella Ezban ◽  
Maureane Hoffman

Background.Recently a novel bifunctional antibody (emicizumab) that binds both factor IXa (FIXa) and factor X (FX) has been used to treat hemophilia A. Emicizumab has proven remarkably effective as a prophylactic treatment for hemophilia A; however there are patients that still experience bleeding. An approach to safely and effectively treating this bleeding in hemophilia A patients with inhibitors is recombinant factor VIIa (rFVIIa). When given at therapeutic levels, rFVIIa can enhance tissue factor (TF) dependent activation of FX as well as activating FX independently of TF. At therapeutic levels rFVIIa can also activate FIX. The goal of this study was to assess the role of the FIXa activated by rFVIIa when emicizumab is added to hemophilia A plasma. Methods. Thrombin generation assays were done in plasma using 100 µM lipid and 420 µM Z-Gly-Gly-Arg-AMC with or without emicizumab at 55 µg/mL which is the clinical steady state level. The reactions were initiated with low (1 pM) tissue factor (TF). rFVIIa was added at concentrations of 25-100 nM with 25 nM corresponding to the plasma levels achieved by a single clinical dose of 90 µg/mL. To study to the role of factor IX in the absence of factor VIII, it was necessary to create a double deficient plasma (factors VIII and IX deficient). This was done by taking antigen negative hemophilia B plasma and adding a neutralizing antibody to factor VIII (Haematologic Technologies, Essex Junction, VT, USA). Now varying concentrations of factor IX could be reconstituted into the plasma to give hemophilia A plasma. Results. As expected, in the double deficient plasma with low TF there was essentially no thrombin generation. Also as expected from previous studies, addition of rFVIIa to double deficient plasma gave a dose dependent increase in thrombin generation through activation of FX. Interestingly addition of plasma levels of FIX to the rFVIIa did not increase thrombin generation. Starting from double deficient plasma, as expected emicizumab did not increase thrombin generation since no factor IX was present. Also, in double deficient plasma with rFVIIa, emicizumab did not increase thrombin generation. But in double deficient plasma with FIX and rFVIIa, emicizumab significantly increased thrombin generation. The levels of thrombin generation increased in a dose dependent fashion with higher concentrations of rFVIIa giving higher levels of thrombin generation. Conclusion. Since addition of FIX to the double deficient plasma with rFVIIa did not increase thrombin generation, it suggests that rFVIIa activation of FX is the only source of the FXa needed for thrombin generation. So in the absence of factor VIII (or emicizumab) FIX activation does not contribute to thrombin generation. However, in the presence of emicizumab, while rFVIIa can still activate FX, FIXa formed by rFVIIa can complex with emicizumab to provide an additional source of FX activation. Thus rFVIIa activation of FIX explains the synergistic effect in thrombin generation observed when combining rFVIIa with emicizumab. The generation of FIXa at a site of injury is consistent with the safety profile observed in clinical use. Disclosures Monroe: Novo Nordisk:Research Funding.Ezban:Novo Nordisk:Current Employment.Hoffman:Novo Nordisk:Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 16-17
Author(s):  
Dougald Monroe ◽  
Mirella Ezban ◽  
Maureane Hoffman

Background. Recently a novel bifunctional antibody (emicizumab) that binds both factor IXa and factor X has been used to treat hemophilia A. Emicizumab has proven remarkably effective as a prophylactic treatment for hemophilia A; however there are patients that still experience bleeding. An approach to treating this bleeding in hemophilia A patients with inhibitors is to give an activated prothrombin complex concentrate (APCC; FEIBA) (disfavored in NHF MASAC #255). APCC contains a number of coaguation factors including prothrombin, factor X (FX), and factor IX (FIX). APCC also contains activated factor X (FXa) and factor IX (FIXa). Previous work has shown that when APCCs are added to hemophilia A plasma containing emicizumab there is a significant increase in thrombin generation [J Thromb Haemost 2018;16:1580-1591]. The goal of this work was to study thrombin generation in hemophilia A plasma with emicizumab and to examine the role of the zymogen and activated components of an APCC in the increased thrombin generation. Methods. In hemophilia A plasma, thrombin generation assays were done using 100 µM lipid and 420 µM Z-Gly-Gly-Arg-AMC with or without emicizumab at 55 µg/mL which is the clinical steady state level. The reactions were initiated with low (1 pM) tissue factor (TF). The components of APCC were studied at concentrations that should mimic the levels seen in the plasma of a patient given a dose of 50 U/kg: prothrombin 1800 nM; FX 130 nM; FIX 90 nM; and FIXa 0.4 nM. Results. When initiated with low TF, hemophilia A plasma alone had essentially no thrombin generation. As expected, adding emicizumab enhanced thrombin generation. The addition of zymogen coagulation factors, prothrombin, FIX, and FX, separately or together gave a small increase in thrombin generation. However, addition of FIXa to emicizumab gave a large increase in peak thrombin. In hemophilia A plasma with emicizumab and FIXa, addition of prothrombin further increased thrombin generation and specifically increased the peak level of thrombin. Further addition of FX or FIX, separately or together, only minimally increased thrombin generation. Discussion. The strong contribution of factor IXa to the effects of APCCs on thrombin generation in hemophilia A plasma depends on the presence of emicizumab. In the absence of emicizumab, a study of the individual components of APCC showed that a combination of FXa and prothrombin at levels found in APCCs had the major effect on thrombin generation [Haemophilia. 2016;22:615-24]. That study found that FIXa did not increase thrombin generation. However, in the presence of emicizumab, despite the weak solution phase affinity of the bifunctional antibody for FIXa, small amounts of FIXa were the most significant contributor to thrombin generation. Disclosures Monroe: Novo Nordisk:Research Funding.Ezban:Novo Nordisk:Current Employment.Hoffman:Novo Nordisk:Research Funding.


2018 ◽  
Vol 118 (02) ◽  
pp. 340-350 ◽  
Author(s):  
Ingrid Stroo ◽  
J. Marquart ◽  
Kamran Bakhtiari ◽  
Tom Plug ◽  
Alexander Meijer ◽  
...  

AbstractCoagulation factor XI is activated by thrombin or factor XIIa resulting in a conformational change that converts the catalytic domain into its active form and exposing exosites for factor IX on the apple domains. Although crystal structures of the zymogen factor XI and the catalytic domain of the protease are available, the structure of the apple domains and hence the interactions with the catalytic domain in factor XIa are unknown. We now used chemical footprinting to identify lysine residue containing regions that undergo a conformational change following activation of factor XI. To this end, we employed tandem mass tag in conjunction with mass spectrometry. Fifty-two unique peptides were identified, covering 37 of the 41 lysine residues present in factor XI. Two identified lysine residues that showed altered flexibility upon activation were mutated to study their contribution in factor XI stability or enzymatic activity. Lys357, part of the connecting loop between A4 and the catalytic domain, was more reactive in factor XIa but mutation of this lysine residue did not impact on factor XIa activity. Lys516 and its possible interactor Glu380 are located in the catalytic domain and are covered by the activation loop of factor XIa. Mutating Glu380 enhanced Arg369 cleavage and thrombin generation in plasma. In conclusion, we have identified novel regions that undergo a conformational change following activation. This information improves knowledge about factor XI and will contribute to development of novel inhibitors or activators for this coagulation protein.


Sign in / Sign up

Export Citation Format

Share Document