Faculty Opinions recommendation of Reciprocal antagonistic regulation of E3 ligases controls ACC synthase stability and responses to stress.

Author(s):  
Zhaojun Ding
Keyword(s):  
2021 ◽  
Vol 118 (34) ◽  
pp. e2011900118
Author(s):  
Han Yong Lee ◽  
Hye Lin Park ◽  
Chanung Park ◽  
Yi-Chun Chen ◽  
Gyeong Mee Yoon

Ethylene influences plant growth, development, and stress responses via crosstalk with other phytohormones; however, the underlying molecular mechanisms are still unclear. Here, we describe a mechanistic link between the brassinosteroid (BR) and ethylene biosynthesis, which regulates cellular protein homeostasis and stress responses. We demonstrate that as a scaffold, 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACS), a rate-limiting enzyme in ethylene biosynthesis, promote the interaction between Seven-in-Absentia of Arabidopsis (SINAT), a RING-domain containing E3 ligase involved in stress response, and ETHYLENE OVERPRODUCER 1 (ETO1) and ETO1-like (EOL) proteins, the E3 ligase adaptors that target a subset of ACS isoforms. Each E3 ligase promotes the degradation of the other, and this reciprocally antagonistic interaction affects the protein stability of ACS. Furthermore, 14–3-3, a phosphoprotein-binding protein, interacts with SINAT in a BR-dependent manner, thus activating reciprocal degradation. Disrupted reciprocal degradation between the E3 ligases compromises the survival of plants in carbon-deficient conditions. Our study reveals a mechanism by which plants respond to stress by modulating the homeostasis of ACS and its cognate E3 ligases.


2020 ◽  
Vol 28 (1) ◽  
pp. 152-168
Author(s):  
Zhi-Xiang Zhou ◽  
Zhong Ren ◽  
Bin-Jie Yan ◽  
Shun-Lin Qu ◽  
Zhi-Han Tang ◽  
...  

: Atherosclerosis is a chronic inflammatory vascular disease. Atherosclerotic cardiovascular disease is the main cause of death in both developed and developing countries. Many pathophysiological factors, including abnormal cholesterol metabolism, vascular inflammatory response, endothelial dysfunction and vascular smooth muscle cell proliferation and apoptosis, contribute to the development of atherosclerosis and the molecular mechanisms underlying the development of atherosclerosis are not fully understood. Ubiquitination is a multistep post-translational protein modification that participates in many important cellular processes. Emerging evidence suggests that ubiquitination plays important roles in the pathogenesis of atherosclerosis in many ways, including regulation of vascular inflammation, endothelial cell and vascular smooth muscle cell function, lipid metabolism and atherosclerotic plaque stability. This review summarizes important contributions of various E3 ligases to the development of atherosclerosis. Targeting ubiquitin E3 ligases may provide a novel strategy for the prevention of the progression of atherosclerosis.


2016 ◽  
Vol 11 (3) ◽  
pp. 346-356
Author(s):  
Nada Ayadi ◽  
Sarra Aloui ◽  
Rabeb Shaiek ◽  
Oussama Rokbani ◽  
Faten Raboud ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 5712
Author(s):  
Michał Tracz ◽  
Ireneusz Górniak ◽  
Andrzej Szczepaniak ◽  
Wojciech Białek

The SPL2 protein is an E3 ubiquitin ligase of unknown function. It is one of only three types of E3 ligases found in the outer membrane of plant chloroplasts. In this study, we show that the cytosolic fragment of SPL2 binds lanthanide ions, as evidenced by fluorescence measurements and circular dichroism spectroscopy. We also report that SPL2 undergoes conformational changes upon binding of both Ca2+ and La3+, as evidenced by its partial unfolding. However, these structural rearrangements do not interfere with SPL2 enzymatic activity, as the protein retains its ability to auto-ubiquitinate in vitro. The possible applications of lanthanide-based probes to identify protein interactions in vivo are also discussed. Taken together, the results of this study reveal that the SPL2 protein contains a lanthanide-binding site, showing for the first time that at least some E3 ubiquitin ligases are also capable of binding lanthanide ions.


2021 ◽  
Vol 22 (9) ◽  
pp. 4728
Author(s):  
Tanuza Das ◽  
Eun Joo Song ◽  
Eunice EunKyeong Kim

Ubiquitination and deubiquitination are protein post-translational modification processes that have been recognized as crucial mediators of many complex cellular networks, including maintaining ubiquitin homeostasis, controlling protein stability, and regulating several signaling pathways. Therefore, some of the enzymes involved in ubiquitination and deubiquitination, particularly E3 ligases and deubiquitinases, have attracted attention for drug discovery. Here, we review recent findings on USP15, one of the deubiquitinases, which regulates diverse signaling pathways by deubiquitinating vital target proteins. Even though several basic previous studies have uncovered the versatile roles of USP15 in different signaling networks, those have not yet been systematically and specifically reviewed, which can provide important information about possible disease markers and clinical applications. This review will provide a comprehensive overview of our current understanding of the regulatory mechanisms of USP15 on different signaling pathways for which dynamic reverse ubiquitination is a key regulator.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2873
Author(s):  
Shu-Chun Chang ◽  
Chin-Sheng Hung ◽  
Bo-Xiang Zhang ◽  
Tsung-Han Hsieh ◽  
Wayne Hsu ◽  
...  

Breast cancer (BRCA) malignancy causes major fatalities amongst women worldwide. SCF (Skp1-cullin-F-box proteins) E3 ubiquitin ligases are the most well-known members of the ubiquitination–proteasome system (UPS), which promotes cancer initiation and progression. Recently, we demonstrated that FBXL8, a novel F-box protein (SCFF-boxes) of SCF E3 ligase, accelerates BRCA advancement and metastasis. Since SCFF-boxes is a key component of E3 ligases, we hypothesized that other SCFF-boxes besides FBXL8 probably collaborate in regulating breast carcinogenesis. In this study, we retrospectively profiled the transcriptome of BRCA tissues and found a notable upregulation of four SCFF-box E3 ligases (FBXL8, FBXO43, FBXO15, and CCNF) in the carcinoma tissues. Similar to FBXL8, the knockdown of FBXO43 reduced cancer cell viability and proliferation, suggesting its pro-tumorigenic role. The overexpression of CCNF inhibited cancer cell progression, indicating its anti-tumorigenic role. Unexpectedly, CCNF protein was markedly downregulated in BRCA tissues, although its mRNA level was high. We showed that both E3 ligases, FBXL8 and FZR1, pulled down CCNF. Double knockdown of FBXL8 and FZR1 caused CCNF accumulation. On the other hand, CCNF itself pulled down a tumorigenic factor, RRM2, and CCNF overexpression reduced RRM2. Altogether, we propose a signature network of E3 ligases that collaboratively modulates CCNF anti-cancer activity. There is potential to target BRCA through modulation of the partnership axes of (i) CCNF-FBXL8, (ii) CCNF-FZR1, and (iii) CCNF-RRM2, particularly, via CCNF overexpression and activation and FBXL8/FZR1 suppression.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 168-168
Author(s):  
Melissa S Roths ◽  
Megan A Abeyta ◽  
Tori Rudolph ◽  
Brittany Wilson ◽  
Matthew B Hudson ◽  
...  

Abstract Heat stress (HS) occurs when internal body temperatures are elevated above a thermoneutral zone in response to extreme environmental temperatures. In the U.S. dairy industry, HS results in economic loss due to decreased feed intake, milk quality, and milk yield. Previous work has demonstrated increased plasma urea nitrogen in heat stressed dairy cattle which is thought to originate from increased skeletal muscle proteolysis, however this has not been empirically established. The objective of this investigation was to determine the extent to which HS promotes proteolysis in skeletal muscle of dairy cattle. We hypothesized HS would increase activation of the calpain and proteasome systems in skeletal muscle. To test this hypothesis, following a 3-d acclimation period in individual box stalls, all lactating dairy cows were held under thermoneutral (TN) conditions for 4-d for collection of baseline measures and then exposed to TN or HS conditions for 7-d followed by a biopsy of semitendinosus (n=8/group). To induce HS, cattle were fitted with electric heating blankets, which they wore for the duration of the heating period. This approach increased rectal temperature 1.1°C (P< 0.05), respiratory rate by 33 bpm (P< 0.05), plasma urea nitrogen by 19% (P=0.08) and milk urea nitrogen by 26% (P< 0.05), and decreased dry matter intake by 32% (P< 0.05) and milk production by 26% (P< 0.05) confirming HS. Contrary to our expectations, we discovered that calpain I and II abundance and activation, and calpain activity were similar between groups. Likewise, protein expression of E3 ligases, MafBx and Murf1, were similar between groups as was total ubiquitinated proteins and proteasome activity. Collectively, and counter to our hypothesis, these results suggest skeletal muscle proteolysis is not increased following 7-d of HS. These data question the presumed dogma that increased blood urea nitrogen is due to elevated proteolysis in skeletal muscle.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng Gao ◽  
Xianwei Ma ◽  
Ming Yuan ◽  
Yulan Yi ◽  
Guoke Liu ◽  
...  

AbstractUbiquitination is one of the most prevalent protein posttranslational modifications. Here, we show that E3 ligase Nedd4l positively regulates antiviral immunity by catalyzing K29-linked cysteine ubiquitination of TRAF3. Deficiency of Nedd4l significantly impairs type I interferon and proinflammatory cytokine production induced by virus infection both in vitro and in vivo. Nedd4l deficiency inhibits virus-induced ubiquitination of TRAF3, the binding between TRAF3 and TBK1, and subsequent phosphorylation of TBK1 and IRF3. Nedd4l directly interacts with TRAF3 and catalyzes K29-linked ubiquitination of Cys56 and Cys124, two cysteines that constitute zinc fingers, resulting in enhanced association between TRAF3 and E3 ligases, cIAP1/2 and HECTD3, and also increased K48/K63-linked ubiquitination of TRAF3. Mutation of Cys56 and Cys124 diminishes Nedd4l-catalyzed K29-linked ubiquitination, but enhances association between TRAF3 and the E3 ligases, supporting Nedd4l promotes type I interferon production in response to virus by catalyzing ubiquitination of the cysteines in TRAF3.


Sign in / Sign up

Export Citation Format

Share Document