scholarly journals The examination of relation between the C/N ratio and the biogas yields in the Regional Biogas Plant of Nyírbátor

2009 ◽  
pp. 63-68
Author(s):  
Lili Mézes ◽  
Tibor Bíró ◽  
Mihály Petis

The Regional Biogas Plant of Nyírbátor was built by the Bátortrade Ltd. The biogas plant contains 6 mezophil and 6 thermophil fermentation tanks, because the biogas production is based on mixed compositions. The regional plant is a multifunctional system. It produces agricultural products and biogas with high methane content. The utilization of biogas is also accomplished here; gas-engines transform it to electricity andheat-energy. The product electricity is used by the local plants, the surplus is sold. The aim of the research is the examination of the quality and quantity of the input materials that put into the mixers and follow the seasonal, periodical and optional changes of the input materials. The analyzation of the quality and quantity data can give an answer to the optional changes of biogas production because the input materials determine the composition of the examined recipe. The C/N ratio was between 11-13, the maximal value of the biogas yield was observed by 12.35 C/N ratio.

Author(s):  
Vannasinh Souvannasouk ◽  
Ming-yan Shen ◽  
Marlen Trejo ◽  
Prakash Bhuyar

The use of alternative biomass sources that are not competitive with food production is intended for sustainable management in biogas production through anaerobic digestion. This study investigates the Napier grass and cattle slurry-based biogas production application that could be applied more cost-effectively more sustainable production biogas. The laboratory-based biogas plant and a biogas plant in practice revealed that the results from the laboratory experiments were realistic and transferable into practice. The effect of feedstock screening on the biogas yield of Napier grass and cattle slurry was evaluated in batch digesters under mesophilic conditions. Moreover, highest methane content was reached 64.4%. The biogas from the co-digestion of Napier grass and cow farm slurry containing the higher calorific value was 25.69 MJ/m3, and the lower calorific value was 23.14 MJ/m3 . The results demonstrated that combining Napier grass with common cow farm slurry can accelerate the reaction, increase efficiency, and increase methane content. Therefore, the co-digestion of Napier grass and cow farm slurry was a promising method for increasing biogas production.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Karol Postawa ◽  
Jerzy Szczygieł ◽  
Marek Kułażyński

Abstract Background Increasing the efficiency of the biogas production process is possible by modifying the technological installations of the biogas plant. In this study, specific solutions based on a mathematical model that lead to favorable results were proposed. Three configurations were considered: classical anaerobic digestion (AD) and its two modifications, two-phase AD (TPAD) and autogenerative high-pressure digestion (AHPD). The model has been validated based on measurements from a biogas plant located in Poland. Afterward, the TPAD and AHPD concepts were numerically tested for the same volume and feeding conditions. Results The TPAD system increased the overall biogas production from 9.06 to 9.59%, depending on the feedstock composition, while the content of methane was slightly lower in the whole production chain. On the other hand, the AHPD provided the best purity of the produced fuel, in which a methane content value of 82.13% was reached. At the same time, the overpressure leads to a decrease of around 7.5% in the volumetric production efficiency. The study indicated that the dilution of maize silage with pig manure, instead of water, can have significant benefits in the selected configurations. The content of pig slurry strengthens the impact of the selected process modifications—in the first case, by increasing the production efficiency, and in the second, by improving the methane content in the biogas. Conclusions The proposed mathematical model of the AD process proved to be a valuable tool for the description and design of biogas plant. The analysis shows that the overall impact of the presented process modifications is mutually opposite. The feedstock composition has a moderate and unsteady impact on the production profile, in the tested modifications. The dilution with pig manure, instead of water, leads to a slightly better efficiency in the classical configuration. For the TPAD process, the trend is very similar, but the AHPD biogas plant indicates a reverse tendency. Overall, the recommendation from this article is to use the AHPD concept if the composition of the biogas is the most important. In the case in which the performance is the most important factor, it is favorable to use the TPAD configuration.


2013 ◽  
Vol 295-298 ◽  
pp. 1735-1739
Author(s):  
Fu Bin Yin ◽  
Zi Fu Li ◽  
Shuang Hou ◽  
Xiao Feng Bai ◽  
Ting Ting Wang

The main objectives of this research were to determine the effect of leachate refluence on biogas production for dry mesophilic co-fermentation of chicken manure and corn straw. The biogas production, the ratio of biogas production, methane content and pH were analyzed. The results showed that the leachate refluence has a significant impact on biogas production of dry co-fermentation. The cumulative biogas yield of the once in 48h has an increase by 10% and 5% for no reflux and once in 24h, respectively. The leachate refluence has little influence on the methane content, but it has good effect to keep pH in the optimum rang.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2392 ◽  
Author(s):  
Marcin Dębowski ◽  
Marcin Zieliński ◽  
Marta Kisielewska ◽  
Joanna Kazimierowicz

The aim of this study was the performance evaluation of anaerobic digestion of dairy wastewater in a multi-section horizontal flow reactor (HFAR) equipped with microwave and ultrasonic generators to stimulate biochemical processes. The effects of increasing organic loading rate (OLR) ranging from 1.0 g chemical oxygen demand (COD)/L·d to 4.0 g COD/L·d on treatment performance, biogas production, and percentage of methane yield were determined. The highest organic compounds removals (about 85% as COD and total organic carbon—TOC) were obtained at OLR of 1.0–2.0 g COD/L·d. The highest biogas yield of 0.33 ± 0.03 L/g COD removed and methane content in biogas of 68.1 ± 5.8% were recorded at OLR of 1.0 g COD/L·d, while at OLR of 2.0 g COD/L·d it was 0.31 ± 0.02 L/COD removed and 66.3 ± 5.7%, respectively. Increasing of the OLR led to a reduction in biogas productivity as well as a decrease in methane content in biogas. The best technological effects were recorded in series with an operating mode of ultrasonic generators of 2 min work/28 min break. More intensive sonication reduced the efficiency of anaerobic digestion of dairy wastewater as well as biogas production. A low nutrient removal efficiency was observed in all tested series of the experiment, which ranged from 2.04 ± 0.38 to 4.59 ± 0.68% for phosphorus and from 9.67 ± 3.36 to 20.36 ± 0.32% for nitrogen. The effects obtained in the study (referring to the efficiency of wastewater treatment, biogas production, as well as to the results of economic analysis) proved that the HFAR can be competitive to existing industrial technologies for food wastewater treatment.


Author(s):  
Fei Wang ◽  
Mengfu Pei ◽  
Ling Qiu ◽  
Yiqing Yao ◽  
Congguang Zhang ◽  
...  

Poultry manure is the main source of agricultural and rural non-point source pollution, and its effective disposal through anaerobic digestion (AD) is of great significance; meanwhile, the high nitrogen content of chicken manure makes it a typical feedstock for anaerobic digestion. The performance of chicken-manure-based AD at gradient organic loading rates (OLRs) in a continuous stirred tank reactor (CSTR) was investigated herein. The whole AD process was divided into five stages according to different OLRs, and it lasted for 150 days. The results showed that the biogas yield increased with increasing OLR, which was based on the volatile solids (VS), before reaching up to 11.5 g VS/(L·d), while the methane content was kept relatively stable and maintained at approximately 60%. However, when the VS was further increased to 11.5 g VS/(L·d), the total ammonia nitrogen (TAN), pH, and alkalinity (CaCO3) rose to 2560 mg·L−1, 8.2, and 15,000 mg·L−1, respectively, while the volumetric biogas production rate (VBPR), methane content, and VS removal efficiency decreased to 0.30 L·(L·d)−1, 45%, and 40%, respectively. Therefore, the AD performance immediately deteriorated and ammonia inhibition occurred. Further analysis demonstrated that the microbial biomass yield and concentrations dropped dramatically in this period. These results indicated that the AD stayed steady when the OLR was lower than 11.5 g VS/(L·d); this also provides valuable information for improving the efficiency and stability of AD of a nitrogen-rich substrate.


2013 ◽  
Vol 666 ◽  
pp. 43-49 ◽  
Author(s):  
Xiu Chen Li ◽  
Xiao Hua Gu ◽  
Guo Chen Zhang ◽  
Chen Xiao Mu ◽  
Qian Zhang

Experimental studies on biogas yield of Ulva pertusa were carried out at different fermentation conditions. At 25°C, 35°C and 45°C, the biogas yield from fermentation of Ulva pertusa were 223.2mL/gVS, 256.2mL/gVS and 300.0mL/gVS,respectively, while the methane content in the biogas produced at 35°C was the highest. In addition, biogas yield reached to 482.5mL/gVS and 499.6mL/gVS by adding waste paper of 3.5g and 7.0g to the fermentation liquor, the corresponding methane content in the biogas were 56.0% and 51.2%, respectively. Comparatively, higher biogas yield, methane content and system stability could obtain from Ulva pertusa by adding 3.5g ~ 7.0g of waste paper and fermentation at 35°C.The fermentation process of Ulva pertusa for biogas production generally lasted for 19~25 days.


2013 ◽  
Vol 805-806 ◽  
pp. 208-214
Author(s):  
Hui Huang ◽  
Yuan Fang Deng ◽  
Zhi Peng Cheng ◽  
Ning Xu ◽  
Ji Ming Xu

In order to alleviate the shortage of raw materials in rural household biogas production and promote utilization of the formidable alien invasive species-alternanthera philoxeroides, mixed fermentation by alternanthera philoxeroides and corn stalk was designed and the performance was investigated in separated and different dry matter ratios (18.33, 6.25 and 3.46) treatments, by batch model at (35±1)°C.Results indicated that, the best biogas production appeared in the treatment of dry matter ratio of 6.25 when total solid (TS) loading of raw material was 8% and inoculating amount of biogas slurry was 20%, with TS and volatile solid (VS) biogas yields, and methane content of 325.74±5.11 mL/g, 456.06±4.87 mL/g and 60.56±1.23 %, respectively. Highly significant positive correlations (p˂0.01) were found between degradation rate of VS and four indexes such as average daily biogas yield, TS biogas yield, VS biogas yield and rate of change of total organic carbon (TOC) of fermentation liquid, while positive correlation between degradation rate of VS and methane content, and negative correlation between it and rate of change of volatile fatty acid (VFA), were not significant (p>0.05). Mixed fermentation by alternanthera philoxeroides and corn stalk could improve biogas production and achieve the gas peak in advance, therefore it had good feasibility.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3074
Author(s):  
Apostolos Spyridonidis ◽  
Ioanna A. Vasiliadou ◽  
Christos S. Akratos ◽  
Κaterina Stamatelatou

Biogas plants have been started to expand recently in Greece and their positive contribution to the economy is evident. A typical case study is presented which focuses on the long-term monitoring (lasting for one year) of a 500 kW mesophilic biogas plant consisting of an one-stage digester. The main feedstock used was cow manure, supplemented occasionally with chicken manure, corn silage, wheat/ray silage, glycerine, cheese whey, molasses and olive mill wastewater. The mixture of the feedstocks was adjusted based on their availability, cost and biochemical methane potential. The organic loading rate (OLR) varied at 3.42 ± 0.23 kg COD m−3 day−1 (or 2.74 ± 0.18 kg VS m−3 day−1) and resulted in a stable performance in terms of specific biogas production rate (1.27 ± 0.12 m3 m−3 day−1), biogas yield (0.46 ± 0.05 m3 kg−1 VS, 55 ± 1.3% in methane) and electricity production rate (12687 ± 1140 kWh day−1). There were no problems of foaming, nor was there a need for trace metal addition. The digestate was used by the neighboring farmers who observed an improvement in their crop yield. The profit estimates per feedstock indicate that chicken manure is superior to the other feedstocks, while molasses, silages and glycerin result in less profit due to the long distance of the biogas plant from their production source. Finally, the greenhouse gas emissions due to the digestate storage in the open air seem to be minor (0.81% of the methane consumed).


Author(s):  
Oludare Johnson Odejobi ◽  
Oluwagbenga Abiola Olawuni ◽  
Samuel Olatunde Dahunsi ◽  
Akinbiyi Ayomikusibe John

The present study evaluates the influence of kitchen wastes on animal manures via anaerobic digestion for biogas production. The digestion was done using a digester with a capacity of 5L. The digester was loaded with the slurry of wastes prepared by mixing the wastes with water in ratio 1:1, and operated at mesophilic temperature of 37 ± 2°C for 30 days. The co-digestion of kitchen wastes with poultry droppings produced highest biogas yield (814.0 ml/kg VS fed) and the least (365.84 ml/kg VS fed) was from the co-digestion of kitchen wastes with the mixture of poultry droppings and cow dung. Composition analysis of the biogas showed the highest methane content (63.1%) from kitchen wastes and the lowest (56.2%) from co-digestion of kitchen wastes with poultry droppings. The pH range for optimum biogas production varied between 5.25 and 7.5. The study concluded that biogas yield from co-digestion of substrates, among other factors depends on the composition of participating substrates.


2015 ◽  
Vol 787 ◽  
pp. 97-101
Author(s):  
D. Thamilselvan ◽  
K. Arulkumar ◽  
M. Kannan

The present day’sresearch interests on bioenergy have been expanded rapidly due to oil crisis of 1980s. This bio energy should be available in locally and it’spurer than the fossil fuels. The field of bio energyis important for governments, scientists and business people in worldwide because of its available in nature and renewable resource. Todays the most important renewable energy is Biomass. The biological conversion of biomass to methane has become rapidly increasing in present days. All types of organic wastes can be converted to methane. In this study the installed plant is a sintex floating type biogas plant. The cubic capacity of plant is about 1000 liter. The pH range is maintained in the level of 6.8 to 7.5. The fermentation time of the anaerobic digestion for the efficient usage of gas as a fuel is about 30 days. Our biogas plant is used for all types of anaerobic respirating wastes such as cow dung manure, kitchen wastes etc.The input feed of kitchen waste is about 10 kg per day. The output of the biogas yield is about 0.714 m3/kg. The composition of biogas is 50% to 60% of methane and rather than remaining 30% to 40% CO2and small amount of water about 2% to 5%. The performance characteristics of biogas plant are studied in this paper. To evaluate the performance of biogas production and pH variation throughout this study.


Sign in / Sign up

Export Citation Format

Share Document