scholarly journals Selective Adsorption and Electrocatalysis of Polysulfides through Hexatomic Nickel Clusters Embedded in N-Doped Graphene toward High-Performance Li-S Batteries

Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Jiapeng Ji ◽  
Ying Sha ◽  
Zeheng Li ◽  
Xuehui Gao ◽  
Teng Zhang ◽  
...  

The shuttle effect hinders the practical application of lithium-sulfur (Li-S) batteries due to the poor affinity between a substrate and Li polysulfides (LiPSs) and the sluggish transition of soluble LiPSs to insoluble Li2S or elemental S. Here, we report that Ni hexatomic clusters embedded in a nitrogen-doped three-dimensional (3D) graphene framework (Ni-N/G) possess stronger interaction with soluble polysulfides than that with insoluble polysulfides. The synthetic electrocatalyst deployed in the sulfur cathode plays a multifunctional role: (i) selectively adsorbing the polysulfides dissolved in the electrolyte, (ii) expediting the sluggish liquid-solid phase transformations at the active sites as electrocatalysts, and (iii) accelerating the kinetics of the electrochemical reaction of multielectron sulfur, thereby inhibiting the dissolution of LiPSs. The constructed S@Ni-N/G cathode delivers an areal capacity of 9.43 mAh cm-2 at 0.1 C at S loading of 6.8 mg cm-2, and it exhibits a gravimetric capacity of 1104 mAh g-1 with a capacity fading rate of 0.045% per cycle over 50 cycles at 0.2 C at S loading of 2.0 mg cm-2. This work opens a rational approach to achieve the selective adsorption and expediting of polysulfide transition for the performance enhancement of Li-S batteries.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ruirui Wang ◽  
Renbing Wu ◽  
Chaofan Ding ◽  
Ziliang Chen ◽  
Hongbin Xu ◽  
...  

AbstractThe practical application of lithium–sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes. Herein, a hierarchically porous three-dimension (3D) carbon architecture assembled by cross-linked carbon leaves with implanted atomic Co–N4 has been delicately developed as an advanced sulfur host through a SiO2-mediated zeolitic imidazolate framework-L (ZIF-L) strategy. The unique 3D architectures not only provide a highly conductive network for fast electron transfer and buffer the volume change upon lithiation–delithiation process but also endow rich interface with full exposure of Co–N4 active sites to boost the lithium polysulfides adsorption and conversion. Owing to the accelerated kinetics and suppressed shuttle effect, the as-prepared sulfur cathode exhibits a superior electrochemical performance with a high reversible specific capacity of 695 mAh g−1 at 5 C and a low capacity fading rate of 0.053% per cycle over 500 cycles at 1 C. This work may provide a promising solution for the design of an advanced sulfur-based cathode toward high-performance Li–S batteries.


2017 ◽  
Vol 5 (6) ◽  
pp. 2710-2716 ◽  
Author(s):  
Yanshan Huang ◽  
Ke Li ◽  
Jingjing Liu ◽  
Xing Zhong ◽  
Xiangfeng Duan ◽  
...  

A 3D graphene/polyimide composite is fabricated by a one-step solvothermal strategy as a high-performance cathode for both rechargeable lithium and sodium batteries.


RSC Advances ◽  
2016 ◽  
Vol 6 (109) ◽  
pp. 107768-107775 ◽  
Author(s):  
Yew Von Lim ◽  
Zhi Xiang Huang ◽  
Ye Wang ◽  
Fei Hu Du ◽  
Jun Zhang ◽  
...  

Tungsten disulfide nanoflakes grown on plasma activated three dimensional graphene networks. The work features a simple growth of TMDs-based LIBs anode materials that has excellent rate capability, high specific capacity and long cycling stability.


2021 ◽  
Vol 7 (30) ◽  
pp. eabe9083
Author(s):  
Jong Min Kim ◽  
Ahrae Jo ◽  
Kyung Ah Lee ◽  
Hyeuk Jin Han ◽  
Ye Ji Kim ◽  
...  

Unsupported Pt electrocatalysts demonstrate excellent electrochemical stability when used in polymer electrolyte membrane fuel cells; however, their extreme thinness and low porosity result in insufficient surface area and high mass transfer resistance. Here, we introduce three-dimensionally (3D) customized, multiscale Pt nanoarchitectures (PtNAs) composed of dense and narrow (for sufficient active sites) and sparse (for improved mass transfer) nanoscale building blocks. The 3D-multiscale PtNA fabricated by ultrahigh-resolution nanotransfer printing exhibited excellent performance (45% enhanced maximum power density) and high durability (only 5% loss of surface area for 5000 cycles) compared to commercial Pt/C. We also theoretically elucidate the relationship between the 3D structures and cell performance using computational fluid dynamics. We expect that the structure-controlled 3D electrocatalysts will introduce a new pathway to design and fabricate high-performance electrocatalysts for fuel cells, as well as various electrochemical devices that require the precision engineering of reaction surfaces and mass transfer.


2020 ◽  
Vol 81 (7) ◽  
pp. 1461-1470
Author(s):  
Ying Lu ◽  
Youlin Li ◽  
Yi Gao ◽  
BoXuan Ai ◽  
Wei Gao ◽  
...  

Abstract In this paper, a simple and green method was developed to fabricate a three-dimensional (3D) graphene-based material with the assistance of caffeic acid (CA). The prepared 3D graphene displayed fast and high sorption for norfloxacin (NOR) and ketoprofen (KP). Their adsorption equilibrium was achieved within 12 h for NOR and KP, which was attributed to their fast diffusion in the porous structure of the 3D graphene. The maximum adsorbed amount of this adsorbent was 220.99 mg/g for NOR and 125.37 mg/g for KP according to the Langmuir model at pH 6.6, 298 K. In the competitive adsorption of six pharmaceuticals, the organic compounds in the form of cations are preferentially adsorbed on the adsorbent. The co-existing organic compounds in the actual wastewater do not seriously inhibit the adsorption of NOR and KP. This study provides the theoretical basis for the facile and low-cost preparation of high-performance 3D graphene adsorbents. The results of this study demonstrate the potential utility of 3D graphene as a very effective adsorbent for pharmaceuticals removal from contaminated water.


2019 ◽  
Vol 7 (9) ◽  
pp. 4913-4921 ◽  
Author(s):  
Xiaolong Cheng ◽  
Dongjun Li ◽  
Ying Wu ◽  
Rui Xu ◽  
Yan Yu

A robust composite with Bi nanoparticles embedded in 3D graphene frameworks is designed and shows extraordinary performance in Na/K-ion batteries.


RSC Advances ◽  
2018 ◽  
Vol 8 (19) ◽  
pp. 10277-10283 ◽  
Author(s):  
P. Sun ◽  
Y. L. Gao ◽  
C. Xu ◽  
Y. F. Lian

3D graphene aerogel fabricated via chemical reduction followed by freeze-drying treatment was used as SPE sorbent to extract OPPs from water sample.


Sign in / Sign up

Export Citation Format

Share Document