scholarly journals Pt/CNT Micro-Nanorobots Driven by Glucose Catalytic Decomposition

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hao Wang ◽  
Jiacheng Kan ◽  
Xin Zhang ◽  
Chenyi Gu ◽  
Zhan Yang

Swimming micro-nanorobots have attracted researchers’ interest in potential medical applications on target therapy, biosensor, drug carrier, and others. At present, the experimental setting of the swimming micro-nanorobots was mainly studied in pure water or H2O2 solution. This paper presents a micro-nanorobot that applied glucose in human body fluid as driving fuel. Based on the catalytic properties of the anode and cathode materials of the glucose fuel cell, platinum (Pt) and carbon nanotube (CNT) were selected as the anode and cathode materials, respectively, for the micro-nanorobot. The innovative design adopted the method of template electrochemical and chemical vapor deposition to manufacture the Pt/CNT micro-nanorobot structure. Both the scanning electron microscope (SEM) and transmission electron microscope (TEM) were employed to observe the morphology of the sample, and its elements were analyzed by energy-dispersive X-ray spectroscopy (EDX). Through a large number of experiments in a glucose solution and according to Stoker’s law of viscous force and Newton’s second law, we calculated the driving force of the fabricated micro-nanorobot. It was concluded that the structure of the Pt/CNT micro-nanorobot satisfied the required characteristics of both biocompatibility and motion.

2011 ◽  
Vol 339 ◽  
pp. 3-6
Author(s):  
Chun Hua Xu ◽  
Kelvin Leung ◽  
Charles Surya

ZnO nanowires were grown on Au-coated GaN layer on c-plane sapphire by chemical vapor deposition (CVD). As-prepared ZnO oxides were characterized by a scanning electron microscope (SEM) and a transmission electron microscope (TEM). The results show that the growth of ZnO nanowires strongly depends on the location of GaN/sapphire substrates. The diameters of the resulting nanowires were in the range 60 nm with typical length about 10μm. The formation of ZnO nanowires with different morphologies at various positions of the substrate is explained by the mechanisms of vapor-solid and vapor-liquid-solid, respectively.


2000 ◽  
Vol 621 ◽  
Author(s):  
S. Christiansen ◽  
M. Nerding ◽  
C. Eder ◽  
G. Andrae ◽  
F. Falk ◽  
...  

ABSTRACTWe crystallize amorphous silicon (a-Si) layers (thicknesses: ∼300nm and ∼1300nm for comparison) that are deposited on glass substrates (Corning 7059) by low pressure chemical vapor deposition using a continuous wave Ar+-laser. We scan the raw beam with a diameter of ∼60νm in single traces and traces with varying overlap (30-60%). With optimized process parameters (fluence, scan velocity, overlap) we achieve polycrystalline Si with grains as wide as 100νm. The grain boundary population is dominated by first and second order twin boundaries as analyzed by electron backscattering analysis in the scanning electron microscope and convergent beam electron diffraction in the transmission electron microscope. These twins are known not (or only marginally) to degrade the electrical properties of the material. In addition to twins, dislocations and twin lamellae occur at varying densities (depending on grain orientation and process parameters). The recombination activity of the defects is analyzed by EBIC and according to these measurements crystallization receipts are defined that yield the reduction of electrically detrimental defects.


2015 ◽  
Vol 781 ◽  
pp. 671-674
Author(s):  
Jindamanee Nissayan ◽  
Saifon Kruehong ◽  
Chaiyaput Kruehong ◽  
Apichat Artnaseaw

Synthesis of carbon fibers of cotton by chemical vapor deposition (CDV) method is the main focus of this study. Having ferocene as the catalyst, the study explored effects of synthesis process at different temperatures (750°C, 850°C and 950°C). Analysis of size, shape and structure were conducted using scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscope. The result showed that average diameter of carbon fibers tended to increase according to temperature. In addition, it was found that surface of the fiber is bend and helical. Also, higher temperature affected graphitic of the fiber.


NANO ◽  
2015 ◽  
Vol 10 (08) ◽  
pp. 1550112
Author(s):  
Jiang Zhao ◽  
Jing Chen ◽  
Pengcheng Zhang ◽  
Haofeng Yu ◽  
Jie Chen

Multi-walled carbon nanotubes (MWCNTs) produced by chemical vapor deposition (CVD) are the most common commercial products at extremely low price in the market. However, due to the inherent drawbacks of CVD surroundings at temperature below [Formula: see text][Formula: see text]1000[Formula: see text]C, CVD-grown nanotubes usually have very disordered structure, resulting in most of their properties being much below expectations. Herein, we present a simple and energy-efficient method for improving rapidly the structure of CVD-grown MWCNTs via a drastic thermite reaction process. Direct observations from scan electron microscope (SEM) and transmission electron microscope (TEM) images, decrease of [Formula: see text] ratios in Raman spectra, increase of the starting oxidation temperatures observed in thermogravimetric analysis (TGA), decrease of the volumetric electrical resistivity and decrease of the turn-on electric fields from 3.64 to 2.88[Formula: see text]V/[Formula: see text]m in field emission measurements suggest that the graphitization of MWCNTs can be effectively enhanced and the structure of nanotubes becomes more ordered after the drastic thermite reaction process.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Zainab Yunusa ◽  
Suraya Abdul Rashid ◽  
Mohd Nizar Hamidon ◽  
Syed Hafiz ◽  
Ismayadi Ismail ◽  
...  

We report the synthesis of Graphitic Nanoribbons (GNRs) using Alcohol Catalytic Chemical Vapor Deposition (ACCVD). Bulk GNR was synthesized directly on a piezoelectric substrate using one-step ACCVD. The synthesized GNRs were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Energy Dispersive X-Ray (EDX), Atomic Force Microscopy (AFM), and Raman spectroscopy. The characterization results showed Y-tip morphology of bulk and filamentous as-grown GNR having varying width that lies between tens and hundreds of nm and length of several microns. Based on the thickness obtained from the AFM and the analysis from the Raman spectroscopy, it was concluded that the synthesized GNRs are multiple-layered and graphitic in nature. With the direct synthesis of GNR on a piezoelectric substrate, it could have applications in the sensor industries, while the Y-tip GNR could have potentialities in semiconductor applications.


Sign in / Sign up

Export Citation Format

Share Document