Effects of autologous platelet rich plasma gel and calcium phosphate biomaterials on bone healing in an ulnar ostectomy model in dogs

2009 ◽  
Vol 22 (06) ◽  
pp. 460-466 ◽  
Author(s):  
J.-G. Grand ◽  
E. Dalibert ◽  
B. Fellah ◽  
O. Gauthier ◽  
G.W. Niebauer ◽  
...  

SummaryThe aim of the study was to evaluate the bone healing properties of an osteopromotive platelet rich plasma (PRP) gel in combination with osteoconductive calcium phosphate (CaP) ceramic granules in a long-bone critical size defect in dogs. A standardised 2 cm long ulnar ostectomy was performed bilaterally in four dogs to compare new-bone formation by CaP matrix with and without association with PRP. Radiographic and histological evaluations were performed blindly. Radiographic evaluation was performed at three, six, nine, 12 and 16 weeks postoperatively. Quantitative measurements of new-bone formation were compared using statistical analysis. At explantation 16 weeks after surgery, no significant ossification was present, neither with CaP granules alone nor in association with PRP gel, and there was no difference of radiodensity between the groups. Qualitative histological evaluation demonstrated for both types of implants the presence of non-mineralised fibrous connective tissue around the CaP granules. New-bone formation was only present to a very small extent within the macropores of the CaP granules at the distal boneimplant interface. In our model which exhibited very limited osteoconduction, neither the CaP granules alone nor in association with PRP were sufficient to stimulate bone healing. In this canine model employing a critical size ulnar gap, the combination of CaP granules and PRP did not effectively promote bone regeneration.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jacob T. Landeck ◽  
William R. Walsh ◽  
Rema A. Oliver ◽  
Tian Wang ◽  
Mallory R. Gordon ◽  
...  

Abstract Background Calcium phosphate-based bone graft substitutes are used to facilitate healing in bony defects caused by trauma or created during surgery. Here, we present an injectable calcium phosphate-based bone void filler that has been purposefully formulated with hyaluronic acid to offer a longer working time for ease of injection into bony defects that are difficult to access during minimally invasive surgery. Methods The bone substitute material deliverability and physical properties were characterized, and in vivo response was evaluated in a critical size distal femur defect in skeletally mature rabbits to 26 weeks. The interface with the host bone, implant degradation, and resorption were assessed with time. Results The calcium phosphate bone substitute material could be injected as a paste within the working time window of 7–18 min, and then self-cured at body temperature within 10 min. The material reached a maximum ultimate compressive strength of 8.20 ± 0.95 MPa, similar to trabecular bone. The material was found to be biocompatible and osteoconductive in vivo out to 26 weeks, with new bone formation and normal bone architecture observed at 6 weeks, as demonstrated by histological evaluation, microcomputed tomography, and radiographic evaluation. Conclusions These findings show that the material properties and performance are well suited for minimally invasive percutaneous delivery applications.


2010 ◽  
Vol 36 (3) ◽  
pp. 175-184 ◽  
Author(s):  
ErolÖzgür Oktay ◽  
Bahtiyar Demiralp ◽  
Burak Demiralp ◽  
Sevda Senel ◽  
Abdullah Cevdet Akman ◽  
...  

Abstract This study aimed to investigate and compare the effect of chitosan sponge and platelet-rich plasma (PRP) gel alone as well as their combination on bone regeneration in rabbit cranial defects. Four cranial defects with a 4.5-mm diameter were created in rabbit cranium and grafted with PRP, chitosan sponge alone, and chitosan sponge incorporated with PRP. The rabbits were killed by the fourth and eighth weeks, and the defects were analyzed histologically. Higher bone formation was observed in the PRP group when compared with the other groups at weeks 4 and 8. All parts of the defects were filled with thick trabecular new bone in the PRP group. The amount of new bone formation in the control groups was found to be less when compared with the PRP group and the least in the chitosan group. The defects that were filled with chitosan sponge showed a limited amount of new bone formation and an obvious fibrous demarcation line between chitosan particles and bone. Application of PRP showed a histological tendency toward increased bone formation. Other forms or derivatives of chitosan may have beneficial effects to achieve new bone regeneration.


Bone ◽  
2009 ◽  
Vol 45 (2) ◽  
pp. 339-345 ◽  
Author(s):  
Maria Nagata ◽  
Michel Messora ◽  
Roberta Okamoto ◽  
Natália Campos ◽  
Natália Pola ◽  
...  

2011 ◽  
Vol 5 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Oliver D Schneider ◽  
Dirk Mohn ◽  
Roland Fuhrer ◽  
Karina Klein ◽  
Käthi Kämpf ◽  
...  

Background: The purpose of this preliminary study was to assess the in vivo performance of synthetic, cotton wool-like nanocomposites consisting of a biodegradable poly(lactide-co-glycolide) fibrous matrix and containing either calcium phosphate nanoparticles (PLGA/CaP 60:40) or silver doped CaP nanoparticles (PLGA/Ag-CaP 60:40). Besides its extraordinary in vitro bioactivity the latter biomaterial (0.4 wt% total silver concentration) provides additional antimicrobial properties for treating bone defects exposed to microorganisms. Materials and Methods: Both flexible artificial bone substitutes were implanted into totally 16 epiphyseal and metaphyseal drill hole defects of long bone in sheep and followed for 8 weeks. Histological and histomorphological analyses were conducted to evaluate the biocompatibility and bone formation applying a score system. The influence of silver on the in vivo performance was further investigated. Results: Semi-quantitative evaluation of histology sections showed for both implant materials an excellent biocompatibility and bone healing with no resorption in the adjacent bone. No signs of inflammation were detectable, either macroscopically or microscopically, as was evident in 5 µm plastic sections by the minimal amount of inflammatory cells. The fibrous biomaterials enabled bone formation directly in the centre of the former defect. The area fraction of new bone formation as determined histomorphometrically after 8 weeks implantation was very similar with 20.5 ± 11.2 % and 22.5 ± 9.2 % for PLGA/CaP and PLGA/Ag-CaP, respectively. Conclusions: The cotton wool-like bone substitute material is easily applicable, biocompatible and might be beneficial in minimal invasive surgery for treating bone defects.


2015 ◽  
Vol 28 (06) ◽  
pp. 417-424 ◽  
Author(s):  
S. A. Papadimitriou ◽  
A. D. Galatos ◽  
N. N. Prassinos ◽  
D. Psalla ◽  
M. Dalstra ◽  
...  

SummaryObjectives: To evaluate the influence of titanium mesh on guided bone regeneration when used, either alone or in combination with autogenous bone block graft, in a canine ulnar model.Methods: Thirty-two, purpose bred, adult, castrated male Beagles were used, divided into four equal-size groups. A unilateral middiaphyseal ulnar critical-size defect was created in each dog. The ulnar segments were stabilized with a stainless-steel plate and screws. Each defect was managed by: no further treatment (Group A) or by placement of a bone block graft taken from the ipsilateral iliac crest (Group B), or titanium mesh wrapped around the ulna (Group C), or a bone block graft and titanium mesh (Group D). After six months, bone block biopsies were performed and the samples were scanned using micro-computed tomography. Qualitative histological evaluation was performed on two non-decalcified longitudinal sections from each block.Results: No significant differences in terms of mineralized bone volume were detected between the grafted sites (Groups B and D) or between the non-grafted ones (Groups A and C). The histological evaluation indicated good integration of the bone blocks irrespective of the use of titanium mesh.Clinical significance: The use of titanium mesh does not influence the amount of bone formation. The canine ulnar critical-size defect model seems to be a reliable model to use in experimental studies.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1993 ◽  
Author(s):  
Kunio Ishikawa ◽  
Youji Miyamoto ◽  
Akira Tsuchiya ◽  
Koichiro Hayashi ◽  
Kanji Tsuru ◽  
...  

Three commercially available artificial bone substitutes with different compositions, hydroxyapatite (HAp; Neobone®), carbonate apatite (CO3Ap; Cytrans®), and β-tricalcium phosphate (β-TCP; Cerasorb®), were compared with respect to their physical properties and tissue response to bone, using hybrid dogs. Both Neobone® (HAp) and Cerasorb® (β-TCP) were porous, whereas Cytrans® (CO3Ap) was dense. Crystallite size and specific surface area (SSA) of Neobone® (HAp), Cytrans® (CO3Ap), and Cerasorb® (β-TCP) were 75.4 ± 0.9 nm, 30.8 ± 0.8 nm, and 78.5 ± 7.5 nm, and 0.06 m2/g, 18.2 m2/g, and 1.0 m2/g, respectively. These values are consistent with the fact that both Neobone® (HAp) and Cerasorb® (β-TCP) are sintered ceramics, whereas Cytrans® (CO3Ap) is fabricated in aqueous solution. Dissolution in pH 5.3 solution mimicking Howship’s lacunae was fastest in CO3Ap (Cytrans®), whereas dissolution in pH 7.3 physiological solution was fastest in β-TCP (Cerasorb®). These results indicated that CO3Ap is stable under physiological conditions and is resorbed at Howship’s lacunae. Histological evaluation using hybrid dog mandible bone defect model revealed that new bone was formed from existing bone to the center of the bone defect when reconstructed with CO3Ap (Cytrans®) at week 4. The amount of bone increased at week 12, and resorption of the CO3Ap (Cytrans®) was confirmed. β-TCP (Cerasorb®) showed limited bone formation at week 4. However, a larger amount of bone was observed at week 12. Among these three bone substitutes, CO3Ap (Cytrans®) demonstrated the highest level of new bone formation. These results indicate the possibility that bone substitutes with compositions similar to that of bone may have properties similar to those of bone.


2012 ◽  
Vol 529-530 ◽  
pp. 82-87 ◽  
Author(s):  
Seiko Ohba ◽  
Wei Wang ◽  
Soichiro Itoh ◽  
Akiko Nagai ◽  
Kimihiro Yamashita

The effects of electrically polarized HA microgranule/PRP compositeon new bone formation were examined. The composite gel was implanted into bone holes in rabbits. Histological examination was performed 3 and 6 weeks post-surgery. It was hypothesized that PRP alone could not induce new bone formation until 6 weeks after implantation. HA microgranules with or without electrical polarization/PRP composite, especially the former, activated osteogenic cells, resulting in enhanced bone formation. It was confirmed that electrical polarization treatment of HA microgranules can accelerate new bone formation and this effect is enhanced by forming a complex within PRP.


2018 ◽  
Vol 26 (3) ◽  
pp. 230949901880249 ◽  
Author(s):  
İbrahim Deniz Canbeyli ◽  
Rahmi Can Akgun ◽  
Orcun Sahin ◽  
Aysen Terzi ◽  
İsmail Cengiz Tuncay

Purpose: This study aimed to analyze the immunohistochemical effect of platelet-rich plasma (PRP) on healing of long-bone fractures in terms of bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF), the Ki-67 proliferation index, and radiological and histological analyses. Methods: Sixteen adult rabbits, whose right femoral diaphysis was fractured and fixed with Kirschner wires, were randomly divided into two groups, control and PRP (groups A and B, respectively). PRP was given to group B at 1 week postoperatively, and all animals were euthanized after 12 weeks. Radiographic evaluations were performed periodically. Cortical callus formation, chondroid and woven bone area percentages, osteoblastic and fibroblastic activities, and mature bone formation were examined. The depths of BMP-2 and VEGF staining were measured. The Ki-67 proliferation index was also calculated. Results: The mean radiological union score of group B was significantly higher than that of group A. There were also statistically significant differences between groups A and B in terms of cortical callus formation, woven bone area percentage, fibroblast proliferation, and mature bone formation. Group B had significantly more cortical callus and mature bone formation with less woven bone and fibroblast proliferation. Immunohistochemical analysis revealed no statistically significant difference between the groups in terms of BMP-2 and VEGF staining and the Ki-67 index. Conclusions: PRP had no effect on BMP-2 or VEGF levels with no increase in the Ki-67 proliferation index, although its application had a positive effect on bone healing by increasing callus and mature bone formation with decreased woven bone and fibroblast proliferation.


2010 ◽  
Vol 36 (5) ◽  
pp. 333-343 ◽  
Author(s):  
Ivy Kiemle Trindade-Suedam ◽  
Juliana Aparecida Najarro Dearo de Morais ◽  
Rafael Silveira Faeda ◽  
Fábio Renato Manzolli Leite ◽  
Guilherme Monteiro Tosoni ◽  
...  

Abstract The objective of the present study was to evaluate the outcomes of autogenous bone graft (AB) and bioglass (BG) associated or not with leukocyte-poor platelet-rich plasma (LP-PRP) in the rabbit maxillary sinus (MS) by histomorphometric and radiographic analysis. Twenty rabbits divided into 2 groups (G1, G2) were submitted to sinus lift surgery. In G1, 10 MS were grafted with AB and 10 MS were grafted with BG. In G2, 10 MS were grafted with AB + LP-PRP and 10 MS were grafted with BG + LP-PRP. After 90 days, the animals were killed and specimens were obtained, x-rayed, and submitted to histomorphometric, radiographic bone density (RD) and fractal dimension analysis. Radiographic bone density mean values (SD), expressed as aluminum equivalent in mm, of AB, BG, AB + LP-PRP, and BG + LP-PRP groups were 1.79 (0.31), 2.04 (0.39), 1.61 (0.28), and 1.53 (0.30), respectively. Significant differences (P < 0.05) were observed between BG and AB, and BG + PRP and BG. Fractal dimension mean values were 1.48 (0.04), 1.35 (0.08), 1.44 (0.04), and 1.44 (0.06), respectively. Significant differences were observed between BG and AB, and AB + LP-PRP and BG. Mean values for the percentage of bone inside MS were 63.30 (8.60), 52.65 (10.41), 55.25 (7.01), and 51.07 (10.25), respectively. No differences were found. No correlations were observed among percentage of bone, RD and FD. Histological analysis showed that MS treated with AB presented mature and new bone formation. The other groups showed minor bone formation. Within the limitations of this study, the results indicated that at a 90-day time end point, AB yielded better results than AB + LP-PRP, BG, and BG + LP-PRP and should be considered the primary material for MS augmentation.


Sign in / Sign up

Export Citation Format

Share Document