scholarly journals Implementation of a Design of Experiments to Improve Periplasmic Yield of Functional ScFv Antibodies in a Phage Display Platform

Author(s):  
Marjan Abri Aghdam ◽  
Mohammad Reza Tohidkia ◽  
Elham Ghamghami ◽  
Asadollah Ahmadikhah ◽  
Morteza Khanmahamadi ◽  
...  

Purpose: Production of functional recombinant antibody fragments in the periplasm of E. coli is a prerequisite step to achieve sufficient reagent for preclinical studies. Thus, the cost-effective and lab-scale production of antibody fragments demands the optimization of culture conditions. Methods: The culture conditions such as temperature, optical density (OD600) at induction, induction time, and IPTG concentration were investigated to optimize the functional expression of a phage-derived scFv molecule using a design of experiment (DoE). Additionally, the effects of different culture media and osmolyte supplements on the expression yield of scFv were examined. Results: The developed 2FI regression model indicated the significant linear effect of the incubation temperature, the induction time, and the induction OD600 on the expression yield of functional scFv. Besides, the statistical analysis indicated that two significant interactions of the temperature/induction time and the temperature/induction OD600 significantly interplay to increase the yield. Further optimization showed that the expression level of functional scFv was the most optimal when the cultivation was undertaken either in the TB medium or in the presence of media supplements of 0.5 M sorbitol or 100 mM glycine betaine. Conclusion: In the present study, for the first time, we successfully implemented DoE to comprehensively optimize the culture conditions for the expression of scFv molecules in a phage antibody display setting, where scFv molecules can be isolated from a tailor-made phage antibody library known as "Human Single Fold scFv Library I."

1989 ◽  
Vol 35 (6) ◽  
pp. 623-629 ◽  
Author(s):  
D. L. MacLeod ◽  
C. L. Gyles

The effects of selected culture conditions on production of Shiga-like toxin-II variant by an edema disease strain of Escherichia coli (412) and E. coli TB1 (pCG6) containing the cloned genes for Shiga-like toxin-II variant were examined. Incubation time, culture media, incubation temperature, starting pH of the culture medium, aeration, static culture, anaerobiosis, carbon sources, amino acids, antibiotics, and mitomycin C were investigated. The study showed that Shiga-like toxin-II variant was primarily cell associated and that strain TB1 (pCG6) produced as much as 100 times more toxin than did strain 412. Culture conditions that resulted in the greatest yield of Shiga-like toxin-II variant were incubation at 37 °C for 24 h with shaking in syncase broth initially adjusted to pH 8.5. Aerobic culture with shaking resulted in higher yields of Shiga-like toxin-II variant than did static aerobic or anaerobic culture. Addition of various carbon sources or amino acids, or tetracycline, lincomycin, or trimethoprim: sulfadoxine did not increase yields of toxin. The amount of Shiga-like toxin-II variant in supernatant preparations from strain TB1 (pCG6) was significantly increased by addition of mitomycin C to the culture medium.Key words: Shiga-like toxin-II variant, verotoxin, Escherichia coli, edema disease, culture conditions.


2021 ◽  
Vol 10 (15) ◽  
pp. 3249
Author(s):  
Annelies W. Mesman ◽  
Seung-Hun Baek ◽  
Chuan-Chin Huang ◽  
Young-Mi Kim ◽  
Sang-Nae Cho ◽  
...  

An estimated 15–20% of patients who are treated for pulmonary tuberculosis (TB) are culture-negative at the time of diagnosis. Recent work has focused on the existence of differentially detectable Mycobacterium tuberculosis (Mtb) bacilli that do not grow under routine solid culture conditions without the addition of supplementary stimuli. We identified a cohort of TB patients in Lima, Peru, in whom acid-fast bacilli could be detected by sputum smear microscopy, but from whom Mtb could not be grown in standard solid culture media. When we attempted to re-grow Mtb from the frozen sputum samples of these patients, we found that 10 out of 15 could be grown in a glycerol-poor/lipid-rich medium. These fell into the following two groups: a subset that could be regrown in glycerol after “lipid-resuscitation”, and a group that displayed a heritable glycerol-sensitive phenotype that were unable to grow in the presence of this carbon source. Notably, all of the glycerol-sensitive strains were found to be multidrug resistant. Although whole-genome sequencing of the lipid-resuscitated strains identified 20 unique mutations compared to closely related strains, no single genetic lesion could be associated with this phenotype. In summary, we found that lipid-based media effectively fostered the growth of Mtb from a series of sputum smear-positive samples that were not culturable in glycerol-based Lowenstein–Jensen or 7H9 media, which is consistent with Mtb’s known preference for non-glycolytic sources during infection. Analysis of the recovered strains demonstrated that both genetic and non-genetic mechanisms contribute to the observed differential capturability, and suggested that this phenotype may be associated with drug resistance.


2021 ◽  
Vol 137 ◽  
pp. 247-255
Author(s):  
Guillermo Fernández-Taboada ◽  
Lidia Riaño-Umbarila ◽  
Alejandro Olvera-Rodríguez ◽  
Ilse Viridiana Gómez-Ramírez ◽  
Luis Fernando Losoya-Uribe ◽  
...  

2017 ◽  
Vol 131 (13) ◽  
pp. 1393-1404 ◽  
Author(s):  
Anastasia Korolj ◽  
Erika Yan Wang ◽  
Robert A. Civitarese ◽  
Milica Radisic

Engineering functional cardiac tissues remains an ongoing significant challenge due to the complexity of the native environment. However, our growing understanding of key parameters of the in vivo cardiac microenvironment and our ability to replicate those parameters in vitro are resulting in the development of increasingly sophisticated models of engineered cardiac tissues (ECT). This review examines some of the most relevant parameters that may be applied in culture leading to higher fidelity cardiac tissue models. These include the biochemical composition of culture media and cardiac lineage specification, co-culture conditions, electrical and mechanical stimulation, and the application of hydrogels, various biomaterials, and scaffolds. The review will also summarize some of the recent functional human tissue models that have been developed for in vivo and in vitro applications. Ultimately, the creation of sophisticated ECT that replicate native structure and function will be instrumental in advancing cell-based therapeutics and in providing advanced models for drug discovery and testing.


2021 ◽  
Vol 25 (1) ◽  
pp. 574-586
Author(s):  
Marta Bertolini ◽  
Fosca Conti

Abstract Carbon dioxide emissions are strongly related to climate change and increase of global temperature. Whilst a complete change in producing materials and energy and in traffic and transportation systems is already in progress and circular economy concepts are on working, Carbon Capture and Storage (CCS) and Carbon Capture and Utilisation (CCU) represent technically practicable operative strategies. Both technologies have main challenges related to high costs, so that further advanced research is required to obtain feasible options. In this article, the focus is mainly on CCU using microalgae that are able to use CO2 as building block for value-added products such as biofuels, EPS (Extracellular Polymeric Substances), biomaterials and electricity. The results of three strains (UTEX 90, CC 2656, and CC 1010) of the microalgal organism Chlamydomonas reinhardtii are discussed. The results about ideal culture conditions suggest incubation temperature of 30 °C, pH between 6.5 and 7.0, concentrations of acetate between 1.6 and 2.3 g L–1 and of ammonium chloride between 0.1 and 0.5 g L–1, the addition of glucose This green microalga is a valid model system to optimize the production of biomass, carbohydrates and lipids.


Vaccines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 40
Author(s):  
Sandra Guallar-Garrido ◽  
Farners Almiñana-Rapún ◽  
Víctor Campo-Pérez ◽  
Eduard Torrents ◽  
Marina Luquin ◽  
...  

Mycobacterium bovis bacillus Calmette-Guérin (BCG) efficacy as an immunotherapy tool can be influenced by the genetic background or immune status of the treated population and by the BCG substrain used. BCG comprises several substrains with genetic differences that elicit diverse phenotypic characteristics. Moreover, modifications of phenotypic characteristics can be influenced by culture conditions. However, several culture media formulations are used worldwide to produce BCG. To elucidate the influence of growth conditions on BCG characteristics, five different substrains were grown on two culture media, and the lipidic profile and physico-chemical properties were evaluated. Our results show that each BCG substrain displays a variety of lipidic profiles on the outermost surface depending on the growth conditions. These modifications lead to a breadth of hydrophobicity patterns and a different ability to reduce neutral red dye within the same BCG substrain, suggesting the influence of BCG growth conditions on the interaction between BCG cells and host cells.


2021 ◽  
Vol 33 (5) ◽  
pp. 2863-2873
Author(s):  
Anna-Lena Höger ◽  
Carola Griehl ◽  
Matthias Noll

AbstractIn recent years microalgae products have developed increasing market demand, but sustainable industrial production is still challenged by biological stability of large-scale production plants. Yet the relationships between algal hosts, associated microbiomes, and contaminants in photobioreactors remains widely understudied. The aim of this study was to investigate the temporal development of microbiomes of four freshwater microalgae species Scenedesmus vacuolatus, Desmodesmus quadricauda, Chlorella sorokiniana, and Botryococcus braunii, in presence and absence of the zoosporic parasite Amoeboaphelidium protococcarum. To compare the effects of sterile and nonsterile culture conditions, infection experiments were performed in sterile laboratory (sterile) and simulated industrial conditions (open). Algal growth (dry weight, optical density, and nutrient consumption) was observed for 21 days, and samples of the associated microbiome were collected for bacterial 16S rRNA gene Illumina MiSeq sequencing. Infection patterns of A. protococcarum were algae species-specific, irrespectively of culture conditions. Bacterial community analysis demonstrated distinct and stable bacterial communities for each algae species, which were mostly dominated by α- and γ-Proteobacteria. Upon aphelid parasitosis, bacterial diversity increased, and community compositions diverged algae-specific over time. Moreover, bacterial functional traits shifted to detoxification, degradation, and cellulolysis once algae were infected. This study provides a first insight into the close connection between algae, associated bacterial microbiomes and appearing contaminants in photobioreactor systems.


Development ◽  
1974 ◽  
Vol 31 (2) ◽  
pp. 513-526
Author(s):  
M. H. Kaufman ◽  
M. A. H. Surani

Eggs from (C57B1 × A2G)F1 mice were activated by treatment with hyaluronidase, which removed the follicle cells, and cultured in vitro. Observations were made 6–8 h after hyaluronidase treatment to determine the frequency of activation and the types of parthenogenones induced. Cumulus-free eggs resulting from hyaluronidase treatment were incubated for 2¼ h in culture media of various osmolarities. The frequency of activation was found to be dependent on the postovulatory age of oocytes, while the types of parthenogenones induced were dependent on the osmolarity of the in vitro culture medium and their postovulatory age. Culture in low osmolar medium suppressed the extrusion of the second polar body (2PB). This decreased the incidence of haploid eggs with a single pronucleus and 2PB and immediately cleaved eggs from 97·5% to 42·3% of the activated population. Where 2PB extrusion had been suppressed, 97·4% of parthenogenones contained two haploid pronuclei. Very few were observed with a single and presumably diploid pronucleus. Serial observations from 11 to 18 h after hyaluronidase treatment were made on populations of activated eggs as they entered the first cleavage mitosis after 2¼ h incubation in medium either of normal (0·287 osmol) or low (0·168 osmol) osmolarity. A delay in the time of entry into the first cleavage mitosis similar to the duration of incubation in low osmolar medium was observed. Further, eggs were incubated in control and low osmolar culture media containing uniformly labelled [U-14C]amino acid mixture to examine the extent of protein synthesis in recently activated eggs subjected to these culture conditions. An hypothesis is presented to explain the effect of incubation in low osmolar culture medium in delaying the first cleavage mitosis.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Catherine M Castillo ◽  
Joyce Harper ◽  
Stephen A Roberts ◽  
Helen C O’Neill ◽  
Edward D Johnstone ◽  
...  

Abstract STUDY QUESTION Are selected embryo culture conditions namely media, oxygen level, and incubator type, associated with IVF live birth rate (LBR) and the health of singleton offspring at birth? SUMMARY ANSWER There were statistically significant differences in LBR between the eight culture media systems analysed; however, none of the embryo culture factors showed statistically significant associations with birth weight (BW) in multivariable regression analyses. WHAT IS KNOWN ALREADY In clinical ART culture media is the initial environment provided for the growth of human embryos. Pre-implantation development is a critical period of developmental plasticity, which could have long-lasting effects on offspring growth and health. Although some studies have shown an impact of culture medium type on BW, the interaction between culture medium type and associated culture conditions on both treatment success rates (LBR) and offspring BW is largely unexplored. This study aimed to examine these factors in a large multicentre national survey capturing the range of clinical practice. STUDY DESIGN, SIZE, DURATION In this cross-sectional study, data from a survey circulated to all UK IVF clinics requesting information regarding culture medium type, incubator type, and oxygen level used in ART between January 2011 and December 2013 were merged with routinely recorded treatment and outcome data held in the Human Fertilisation and Embryology Authority Register up to the end of 2014. PARTICIPANTS/MATERIALS, SETTING, METHODS Forty-six (62%) UK clinics responded to the survey. A total of 75 287 fresh IVF/ICSI cycles were captured, including 18 693 singleton live births. IVF success (live birth, singleton or multiple; LB), singleton gestation and singleton gestation-adjusted BW were analysed using logistic and linear regression models adjusting for patient/treatment characteristics and clinic-specific effects. MAIN RESULTS AND THE ROLE OF CHANCE Culture medium type was shown to have some impact on LBR (multivariable logistic regression, (MRL); post-regression Wald test, P < 0.001), but not on BW (MLR; post-regression Wald test, P = 0.215). However, blastocyst culture had the largest observed effect on odds of LBR (odds ratio (OR) = 1.35, CI: 1.29–1.42), increased the risk of pre-term birth even when controlling for oxygen tension (MLR; OR = 1.42, CI: 1.23–1.63), and gestation-adjusted BW (MLR, β = 38.97 g, CI: 19.42–58.53 g) when compared to cleavage-stage embryo culture. We noted a very strong effect of clinic site on both LBR and BW, thus confounding between treatment practices and clinic site may have masked the effect of culture conditions. LIMITATIONS, REASONS FOR CAUTION Larger datasets with more inter-centre variation are also needed, with key embryo culture variables comprehensively recorded in national treatment registries. WIDER IMPLICATIONS OF THE FINDINGS This study is the largest investigation of laboratory environmental effects in IVF on both LBR and singleton BW. Our findings largely agree with the literature, which has failed to show a consistent advantage of one culture media type over another. However, we noted some association of LBR with medium type, and the duration of embryo exposure to laboratory conditions (blastocyst culture) was associated with both LBR and singleton health at birth. Because of the strong effect of clinic site noted, further randomized controlled trials are needed in order to reliably determine the effect of embryo culture on IVF success rates and the growth and health of subsequent offspring. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by the EU FP7 project grant EpiHealthNet (FP7-PEOPLE-2012-ITN -317 146). The authors have no competing interests to declare.


Sign in / Sign up

Export Citation Format

Share Document