scholarly journals BCG Substrains Change Their Outermost Surface as a Function of Growth Media

Vaccines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 40
Author(s):  
Sandra Guallar-Garrido ◽  
Farners Almiñana-Rapún ◽  
Víctor Campo-Pérez ◽  
Eduard Torrents ◽  
Marina Luquin ◽  
...  

Mycobacterium bovis bacillus Calmette-Guérin (BCG) efficacy as an immunotherapy tool can be influenced by the genetic background or immune status of the treated population and by the BCG substrain used. BCG comprises several substrains with genetic differences that elicit diverse phenotypic characteristics. Moreover, modifications of phenotypic characteristics can be influenced by culture conditions. However, several culture media formulations are used worldwide to produce BCG. To elucidate the influence of growth conditions on BCG characteristics, five different substrains were grown on two culture media, and the lipidic profile and physico-chemical properties were evaluated. Our results show that each BCG substrain displays a variety of lipidic profiles on the outermost surface depending on the growth conditions. These modifications lead to a breadth of hydrophobicity patterns and a different ability to reduce neutral red dye within the same BCG substrain, suggesting the influence of BCG growth conditions on the interaction between BCG cells and host cells.

2020 ◽  
Author(s):  
Thailín Lao-González ◽  
Alexi Bueno Soler ◽  
Arnelys Duran Hernandez ◽  
Katya Sosa Aguiar ◽  
Luis Eduardo Hinojosa Puerta ◽  
...  

Abstract The high prices of biopharmaceuticals or biologics used in the treatment of many diseases limit the access of patients to these novel therapies. One example is the monoclonal antibody trastuzumab, successfully used for breast cancer treatment. An economic alternative is the generation of biosimilars to these expensive biopharmaceuticals. Since antibody therapies may require large doses over a long period of time, robust platforms and strategies for cell line development are essential for the generation of recombinant cell lines with higher levels of expression. Here, we obtained trastuzumab-expressing CHO-K1 cells through a screening and selection strategy that combined the use of host cells pre-adapted to protein-free media and suspension culture and lentiviral vectors. The results demonstrated that the early screening strategy obtained recombinant CHO-K1 cell populations with higher enrichment of IgG-expressing cells. Moreover, the measurement of intracellular heavy chain polypeptide by flow cytometry was a useful metric to characterize the homogeneity of cell population, and our results suggest this could be used to predict the expression levels of monoclonal antibodies in early stages of cell line development. Additionally, we propose an approach using 25cm2 T-flasks in suspension and shaking culture conditions as a screening tool to identify high producing cell lines. Finally, trastuzumab-expressing CHO-K1 clones were generated and characterized by batch culture, and preliminary results related to HER2-recognition capacity were successful. Further optimization of elements such as gene optimization, vector selection, type of amplification/selection system, cell culture media composition, in combination with this strategy will allow obtaining high producing clones.


2000 ◽  
Vol 46 (5) ◽  
pp. 465-473 ◽  
Author(s):  
Geneviève Mével ◽  
Daniel Prieur

The nitrification activity of a thermophilic heterotrophic bacterium, Bacillus MS30 isolated from a deep-sea hydrothermal vent, was studied under various growth conditions. Nitrification was estimated from the nitrogen balance calculations in the culture media. The results showed that this isolate actively nitrified in culture conditions similar to those prevailing in hydrothermal sites. Therefore, its ecological significance was considered. In standard aerobic conditions, MS30 produced nitrite from ammonia and acetate (1.13 µmol NO2-·mg-1dry wt), but nitrate was never produced, and a low nitrite reduction was often observed. Higher nitrification activities were observed in defined optimal conditions (simple carbon substrate, 65°C, pH 7.5, and 15 g sea salts · L-1). In addition, discrepancies between the optima for growth and nitrification were observed, showing the ability of MS30 to adapt to changing environmental conditions typical of hydrothermal sites.Key words: thermophilic bacteria, heterotrophic nitrification, environmental parameters.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thailin Lao-Gonzalez ◽  
Alexi Bueno-Soler ◽  
Arnelys Duran-Hernandez ◽  
Katya Sosa-Aguiar ◽  
Luis Eduardo Hinojosa-Puerta ◽  
...  

AbstractThe high prices of biopharmaceuticals or biologics used in the treatment of many diseases limit the access of patients to these novel therapies. One example is the monoclonal antibody trastuzumab, successfully used for breast cancer treatment. An economic alternative is the generation of biosimilars to these expensive biopharmaceuticals. Since antibody therapies may require large doses over a long period of time, robust platforms and strategies for cell line development are essential for the generation of recombinant cell lines with higher levels of expression. Here, we obtained trastuzumab-expressing CHO-K1 cells through a screening and selection strategy that combined the use of host cells pre-adapted to protein-free media and suspension culture and lentiviral vectors. The results demonstrated that the early screening strategy obtained recombinant CHO-K1 cell populations with higher enrichment of IgG-expressing cells. Moreover, the measurement of intracellular heavy chain polypeptide by flow cytometry was a useful metric to characterize the homogeneity of cell population, and our results suggest this could be used to predict the expression levels of monoclonal antibodies in early stages of cell line development. Additionally, we propose an approach using 25 cm2 T-flasks in suspension and shaking culture conditions as a screening tool to identify high producing cell lines. Finally, trastuzumab-expressing CHO-K1 clones were generated and characterized by batch culture, and preliminary results related to HER2-recognition capacity were successful. Further optimization of elements such as gene optimization, vector selection, type of amplification/selection system, cell culture media composition, in combination with this strategy will allow obtaining high producing clones.


Author(s):  
Feresteh Moradi ◽  
Marco Fiocchetti ◽  
Maria Marino ◽  
Christopher Moffatt ◽  
Jeffrey A. Stuart

Estradiol (E2) and selective estrogen receptor modulators (SERMs) have broad-ranging cellular effects that include mitochondrial respiration and reactive oxygen species (ROS) metabolism. Many of these effects have been studied using cell culture models. Recent advances have revealed the extent to which cellular metabolism is affected by the culture environment. Cell culture media with metabolite composition similar to blood plasma (e.g. Plasmax, HPLM) alter cellular behaviours including responses to drugs. Similar effects have been observed with respect to O2 levels in cell culture. Given these observations, we set out to determine whether the effects of E2 and SERMs are also influenced by media composition and O2 level during cell culture experiments. We analyzed mitochondrial network characteristics, cellular oxygen consumption rates, and cellular H2O2 production in C2C12 myoblasts growing in physiologic (5%) or standard cell culture (18%) O2 and in physiologic (Plasmax) or standard cell culture (DMEM) media. The cell culture conditions affected all measured parameters under basal conditions and changed how cells responded to E2 or SERMs. These results indicate that the effects of E2 and SERMs on various aspects of cell physiology strongly depends on growth conditions, which in turn emphasizes the need to consider this carefully in cell culture experiments.


2021 ◽  
Vol 27 (3) ◽  
pp. 99-106
Author(s):  
Jang Hoon Lee ◽  
Yong Seong Lee ◽  
Young Cheol Kim

The fungal isolate Isaria javanica pf185 has potential as a mycopesticide because it demonstrates insecticidal activity against the green peach aphid and antifungal activity against Colletotrichum gloeosporioides. For commercialization of this isolate, determination of the optimal and least expensive culture conditions is required; however, these data are not currently available. This study describes the conditions for optimal development of conidia and production of metabolites for the biocontrol of the fungal pathogen. The optimal culture conditions were examined using cultures on solid agar and liquid media. High growth temperature enhanced spore formation but reduced antifungal activity in both solid and liquid media. The highest spore yield was obtained in a medium containing glucose as a carbon source and yeast extract as a nitrogen source. Soybean powder and wheat bran were effective nitrogen sources that promoted spore production and antifungal activity of the isolate. These results revealed the basic, cost-effective growth media for commercial production of a biopesticide with insecticidal and antifungal properties for use in integrated pest management.


2002 ◽  
Vol 48 (1) ◽  
pp. 82-92 ◽  
Author(s):  
María Silvina Juárez Tomás ◽  
Elena Bru de Labanda ◽  
Aída Pesce de Ruiz Holgado ◽  
María Elena Nader-Macías

Lactobacilli are widely described as probiotic microorganisms used to restore the ecological balance of different animal or human tracts. For their use as probiotics, bacteria must show certain characteristics or properties related to the ability of adherence to mucosae or epithelia or show inhibition against pathogenic microorganisms. It is of primary interest to obtain the highest biomass and viability of the selected microorganisms. In this report, the growth of seven vaginal lactobacilli strains in four different growth media and at several inoculum percentages was compared, and the values of growth parameters (lag phase time, maximum growth rate, maximum optical density) were obtained by applying the Gompertz model to the experimental data. The application and estimation of this model is discussed, and the evaluation of the growth parameters is analyzed to compare the growth conditions of lactobacilli. Thus, these results in lab experiments provide a basis for testing different culture conditions to determine the best conditions in which to grow the probiotic lactobacilli for technological applications.Key words: Gompertz model, lactobacilli, growth parameters, vaginal probiotic.


Microbiology ◽  
2010 ◽  
Vol 156 (4) ◽  
pp. 1120-1133 ◽  
Author(s):  
J. Antonio Ibarra ◽  
Leigh A. Knodler ◽  
Daniel E. Sturdevant ◽  
Kimmo Virtaneva ◽  
Aaron B. Carmody ◽  
...  

Salmonella invade non-phagocytic cells by inducing massive actin rearrangements, resulting in membrane ruffle formation and phagocytosis of the bacteria. This process is mediated by a cohort of effector proteins translocated into the host cell by type III secretion system 1, which is encoded by genes in the Salmonella pathogenicity island (SPI) 1 regulon. This network is precisely regulated and must be induced outside of host cells. In vitro invasive Salmonella are prepared by growth in synthetic media although the details vary. Here, we show that culture conditions affect the frequency, and therefore invasion efficiency, of SPI1-induced bacteria and also can affect the ability of Salmonella to adapt to its intracellular niche following invasion. Aerobically grown late-exponential-phase bacteria were more invasive and this was associated with a greater frequency of SPI1-induced, motile bacteria, as revealed by single-cell analysis of gene expression. Culture conditions also affected the ability of Salmonella to adapt to the intracellular environment, since they caused marked differences in intracellular replication. These findings show that induction of SPI1 under different pre-invasion growth conditions can affect the ability of Salmonella to interact with eukaryotic host cells.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Júlia Santos ◽  
Cecília Leão ◽  
Maria João Sousa

The manipulation of nutrient-signaling pathways in yeast has uncovered the impact of environmental growth conditions in longevity. Studies using calorie restriction show that reducing glucose concentration of the culture media is sufficient to increase replicative and chronological lifespan (CLS). Other components of the culture media and factors such as the products of fermentation have also been implicated in the regulation of CLS. Acidification of the culture media mainly due to acetic acid and other organic acids production negatively impacts CLS. Ethanol is another fermentative metabolite capable of inducing CLS reduction in aged cells by yet unknown mechanisms. Recently, ammonium was reported to induce cell death associated with shortening of CLS. This effect is correlated to the concentration ofNH4+added to the culture medium and is particularly evident in cells starved for auxotrophy-complementing amino acids. Studies on the nutrient-signaling pathways regulating yeast aging had a significant impact on aging-related research, providing key insights into mechanisms that modulate aging and establishing the yeast as a powerful system to extend knowledge on longevity regulation in multicellular organisms.


Tuberculosis (TB) is one of the most important zoonotic bacterial diseases. A huge economic loss which could be direct or indirect are associated with the disease. Currently, the primary methods used for detection of TB in humans and cattle include the measurement of a delayed type hypersensitivity to purified protein derivative (PPD). So, the need for preparation of purified PPD with adequate properties and increasing the final PPD yield with decreasing the time of tuberculin production has stimulated the interest in the development of its preparation. Our study was performed to compare between the standard and modified media for improving tuberculin production. Middle brook 7H10 agar medium was used as a modified basic medium for mycobacterial growth, followed by cultivation of mycobacteria on Middle brook 7H9 broth medium. For the production, strains were inoculated onto the culture medium (Dorest Henly synthetic medium). Other steps for tuberculin production was done according to standard Weighbridge protocol. The results demonstrated that the using of both Middle brook 7H10 agar and Middle brook 7H9 broth instead of Lowenstein-Jensen (LJ) and glycerin broth media which used in currently produced tuberculin, have better physical and chemical properties. In addition, reducing the time required for production by accelerating the time of microbial growth. Also, it was found that the tuberculin produced using modified media was slightly more potent or the same as currently tuberculin produced. So, both Middle brook 7H10 agar and Middle brook 7H9 broth media are recommended for production of tuberculin saving time and increasing potency of the product but more investigation was recommended for estimation types of protein present in both locally prepared and modified tuberculin.


2021 ◽  
Vol 11 (13) ◽  
pp. 6008
Author(s):  
Micael F. M. Gonçalves ◽  
Ana Paço ◽  
Luís F. Escada ◽  
Manuela S. F. Albuquerque ◽  
Carlos A. Pinto ◽  
...  

There is an urgent need for new substances to overcome current challenges in the health sciences. Marine fungi are known producers of numerous compounds, but the manipulation of growth conditions for optimal compound production can be laborious and time-consuming. In Portugal, despite its very long coastline, there are only a few studies on marine fungi. From a collection of Portuguese marine fungi, we screened for antimicrobial, antioxidant, enzymatic, and cytotoxic activities. Mycelia aqueous extracts, obtained by high pressure-assisted extraction, and methanolic extracts of culture media showed high antioxidant, antimicrobial, and cytotoxic activities. The mycelium extracts of Cladosporium rubrum showed higher antioxidant potential compared to extracts from other fungi. Mycelia and culture media extracts of Aspergillus affinis and Penicillium lusitanum inhibited the growth of Staphylococcus aureus, Kocuria rhizophila, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, including multiresistant strains. Penicillium lusitanum and Trichoderma aestuarinum inhibited the growth of clinical strains of Candida albicans, C. glabrata, C. parapsilosis, and C. tropicalis. All extracts from culture media were cytotoxic to Vero cells. Sea salt induced alterations in the mycelium’s chemical composition, leading to different activity profiles.


Sign in / Sign up

Export Citation Format

Share Document