scholarly journals Infection with intracellular parasite Amoeboaphelidium protococcarum induces shifts in associated bacterial communities in microalgae cultures

2021 ◽  
Vol 33 (5) ◽  
pp. 2863-2873
Author(s):  
Anna-Lena Höger ◽  
Carola Griehl ◽  
Matthias Noll

AbstractIn recent years microalgae products have developed increasing market demand, but sustainable industrial production is still challenged by biological stability of large-scale production plants. Yet the relationships between algal hosts, associated microbiomes, and contaminants in photobioreactors remains widely understudied. The aim of this study was to investigate the temporal development of microbiomes of four freshwater microalgae species Scenedesmus vacuolatus, Desmodesmus quadricauda, Chlorella sorokiniana, and Botryococcus braunii, in presence and absence of the zoosporic parasite Amoeboaphelidium protococcarum. To compare the effects of sterile and nonsterile culture conditions, infection experiments were performed in sterile laboratory (sterile) and simulated industrial conditions (open). Algal growth (dry weight, optical density, and nutrient consumption) was observed for 21 days, and samples of the associated microbiome were collected for bacterial 16S rRNA gene Illumina MiSeq sequencing. Infection patterns of A. protococcarum were algae species-specific, irrespectively of culture conditions. Bacterial community analysis demonstrated distinct and stable bacterial communities for each algae species, which were mostly dominated by α- and γ-Proteobacteria. Upon aphelid parasitosis, bacterial diversity increased, and community compositions diverged algae-specific over time. Moreover, bacterial functional traits shifted to detoxification, degradation, and cellulolysis once algae were infected. This study provides a first insight into the close connection between algae, associated bacterial microbiomes and appearing contaminants in photobioreactor systems.

2019 ◽  
Vol 7 (12) ◽  
pp. 649 ◽  
Author(s):  
Aly Kodio ◽  
Drissa Coulibaly ◽  
Abdoulaye Kassoum Koné ◽  
Salimata Konaté ◽  
Safiatou Doumbo ◽  
...  

Blastocystis is the most common protozoan colonizing the gut of vertebrates. It modulates the human digestive microbiota in the absence of inflammation and gastrointestinal disease. Although it has been associated with human diseases, including inflammatory bowel disease, its pathogenicity remains controversial. This study aimed to assess the influence of Blastocystis on the gut bacterial communities in healthy children. We conducted a cross-sectional study on 147 Blastocystis-colonized and 149 Blastocystis-noncolonized Malian children, with Blastocystis colonization assessed by real-time PCR and gut microbial communities characterized via 16S rRNA gene (Illumina MiSeq) sequencing and bioinformatics analysis. The gut microbiota diversity was higher in Blastocystis-colonized compared to Blastocystis-noncolonized children. The phyla Firmicutes, Elusimicrobia, Lentisphaerae, and Euryarchaeota were higher in Blastocystis-colonized children, whereas Actinobacteria, Proteobacteria, unassigned bacteria, and Deinococcus–Thermus were higher in Blastocystis-noncolonized children. Moreover, Faecalibacterium prausnitzii (family Ruminococcaceae) and Roseburia sp. (family Lachnospiraceae) abundance was higher in Blastocystis-colonized children. We conclude that Blastocystis colonization is significantly associated with a higher diversity of the gut bacterial communities in healthy children, while it is not associated with the presence of potentially pathogenic bacteria in the human gut.


2020 ◽  
Vol 6 (3) ◽  
pp. 170
Author(s):  
Vadim Yu Kryukov ◽  
Elena Kosman ◽  
Oksana Tomilova ◽  
Olga Polenogova ◽  
Ulyana Rotskaya ◽  
...  

Various insect bacterial associates are involved in pathogeneses caused by entomopathogenic fungi. The outcome of infection (fungal growth or decomposition) may depend on environmental factors such as temperature. The aim of this study was to analyze the bacterial communities and immune response of Galleria mellonella larvae injected with Cordyceps militaris and incubated at 15 °C and 25 °C. We examined changes in the bacterial CFUs, bacterial communities (Illumina MiSeq 16S rRNA gene sequencing) and expression of immune, apoptosis, ROS and stress-related genes (qPCR) in larval tissues in response to fungal infection at the mentioned temperatures. Increased survival of larvae after C. militaris injection was observed at 25 °C, although more frequent episodes of spontaneous bacteriosis were observed at this temperature compared to 15 °C. We revealed an increase in the abundance of enterococci and enterobacteria in the midgut and hemolymph in response to infection at 25 °C, which was not observed at 15 °C. Antifungal peptide genes showed the highest expression at 25 °C, while antibacterial peptides and inhibitor of apoptosis genes were strongly expressed at 15 °C. Cultivable bacteria significantly suppressed the growth of C. militaris. We suggest that fungi such as C. militaris may need low temperatures to avoid competition with host bacterial associates.


2019 ◽  
Vol 7 (10) ◽  
pp. 387 ◽  
Author(s):  
Monica Salamone ◽  
Aldo Nicosia ◽  
Giulio Ghersi ◽  
Marcello Tagliavia

Proteolytic enzymes are of great interest for biotechnological purposes, and their large-scale production, as well as the discovery of strains producing new molecules, is a relevant issue. Collagenases are employed for biomedical and pharmaceutical purposes. The high specificity of collagenase-based preparations toward the substrate strongly relies on the enzyme purity. However, the overall activity may depend on the cooperation with other proteases, the presence of which may be essential for the overall enzymatic activity, but potentially harmful for cells and tissues. Vibrios produce some of the most promising bacterial proteases (including collagenases), and their exo-proteome includes several enzymes with different substrate specificities, the production and relative abundances of which strongly depend on growth conditions. We evaluated the effects of different media compositions on the proteolytic exo-proteome of Vibrio alginolyticus and its closely relative Vibrio parahaemolyticus, in order to improve the overall proteases production, as well as the yield of the desired enzymes subset. Substantial biological responses were achieved with all media, which allowed defining culture conditions for targeted improvement of selected enzyme classes, besides giving insights in possible regulatory mechanisms. In particular, we focused our efforts on collagenases production, because of the growing biotechnological interest due to their pharmaceutical/biomedical applications.


2020 ◽  
Vol 3 (1) ◽  
pp. 231-240
Author(s):  
Łukasz Bołoz ◽  
Antoni Kalukiewicz ◽  
Greg Galecki ◽  
Liubomyr Romanyshyn ◽  
Taras Romanyshyn ◽  
...  

AbstractOne of the basic methods of mechanical rock mining is cutting, which faces increasingly difficult working conditions. Despite the rapid development of machines used in underground and opencast mining as well as in tunnel building, construction industry and road engineering, the problem of insufficient durability of mining tools remains unsolved. In addition to drilling and, to a lesser extent, planing, cutting provides a huge market for tools. Currently, the process of cutting is mainly based on conical picks. The cutterheads of cutting machines are equipped with several dozen, and frequently – more than one hundred conical picks, which, due to their workability and abrasiveness, sometimes work only a few hours. There is a market demand for over two hundred models of conical picks. This is due to the huge variety of shapes and sizes of picks as well as the methods of their mounting in the holder. The article briefly presents various solutions of conical picks, their construction, methods of protection, dimensions and materials used. Next, based on materials produced by ZWM Carbonex, the classic method of their manufacture using the turning technology has been described. The authors have also presented briefly the use of die forging for the large-scale production of picks, applied by Górnicza Fabryka Narzędzi Sp. z o.o.


Author(s):  
Aitana Ares ◽  
Joana Pereira ◽  
Eva Garcia ◽  
Joana Costa ◽  
Igor Tiago

The pandemic Pseudomonas syringae pv. actinidiae (Psa) has been compromising the production of the kiwifruit industry in major producing countries. Abiotic factors and plant gender are known to influence the disease outcome. To better understand their impact, we have determined the diversity of the leafs bacterial communities using the V5-V6 region of the 16S rRNA gene amplicon on the Illumina MiSeq sequencing platform. Healthy and diseased female and male kiwifruit plants were analyzed in two consecutive seasons: spring and autumn. This work describes whether the season, plant gender and the presence of Psa can affect the leaves bacterial community. Fifty bacterial operational taxonomic units (OTUs) were identified and assigned to five phyla distributed by 14 different families and 23 genera. The leaves of healthy female and male kiwi plants share most of the identified bacterial populations, that undergoes major seasonal changes. In both cases a substantial increase of the relative abundance of genus Methylobacterium is observed in autumn. The presence of Psa induced profound changes on leaves bacterial communities structure translated into a reduction in the relative abundance of previously dominant genera that had been found in healthy plants, namely Hymenobacter, Sphingomonas and Massilia. The impact of Psa was less pronounced in the bacterial community structure of male plants in both seasons. Some of the naturally occurring genera have the potential to act as an antagonist or as enhancers of the defense mechanisms paving the way for environmentally friendly and sustainable disease control.


Author(s):  
Gerarda Beatriz Pinto da Silva ◽  
Leise Inês Heckler ◽  
Miria Durigon ◽  
Ricardo Feliciano dos Santos ◽  
Maike Lovato ◽  
...  

Widely consumed by the Brazilian, lettuce has a cultivated area of 35,000 ha. Among the diseases that might infect this crop, white mold causes major concerns for producers. Mold is caused by the fungus Sclerotinia sclerotiorum (Lib.) de Bar. It can lead to losses of up to 100% in lettuce. The objectives of this study were assessment of antagonistic effect of Trichoderma spp. isolates, grown and prepared on rice grain, on white mold of lettuce (S. sclerotiorum). The assay was conducted using 12 Trichoderma spp. isolates, four of which came from at least a year of storage at 4ºC, four from areas with a history of the disease and four from areas without a history of the disease. Both fungi were grown on wet rice grains and only Trichoderma strains was dried and ground to be used in the next assay. The experiment was completely randomized in a factorial 12x2 design (Trichoderma spp. × substrate inoculated or not with S. sclerotiorum) and control plants without any of the fungi. The percentage of survived plants was analyzed using AUDPC, number of leaves, stem diameter, length of root system, fresh and dry weight of shoot and root, and total dry matter. The results showed that all Trichoderma spp. were capable of lettuce growth promotion in the presence and absence of S. sclerotiorum. The isolates that showed the best biocontrol of S. sclerotiorum were TC1.15 and WM-13. To promote growth, the best isolates were UFSMT15.1 and WM-13, suggesting that the latter presents desirable characteristics for biocontrol, including excellent feasibility for large-scale production, good antagonistic activity to S. sclerotiorum and the ability to stimulate growth promotion in lettuce.


2019 ◽  
Vol 21 (1) ◽  
pp. 279
Author(s):  
Qinghua Zhou ◽  
Zhixin Su ◽  
Liangcheng Jiao ◽  
Yao Wang ◽  
Kaixin Yang ◽  
...  

As a promising biocatalyst, Yarrowia lipolytica lipase 2 (YlLip2) is limited in its industrial applications due to its low thermostability. In this study, a thermostable YlLip2 mutant was overexpressed in Pichia pastoris and its half-life time was over 30 min at 80 °C. To obtain a higher protein secretion level, the gene dosage of the mutated lip2 gene was optimized and the lipase activity was improved by about 89%. Then, the YlLip2 activity of the obtained strain further increased from 482 to 1465 U/mL via optimizing the shaking flask culture conditions. Subsequently, Hac1p and Vitreoscilla hemoglobin (VHb) were coexpressed with the YlLip2 mutant to reduce the endoplasmic reticulum stress and enhance the oxygen uptake efficiency in the recombinant strains, respectively. Furthermore, high-density fermentations were performed in a 3 L bioreactor and the production of the YlLip2 mutant reached 9080 U/mL. The results demonstrated that the expression level of the thermostable YlLip2 mutant was predominantly enhanced via the combination of these strategies in P. pastoris, which forms a consolidated basis for its large-scale production and future industrial applications.


Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1592
Author(s):  
Vishal Ahuja ◽  
Markéta Macho ◽  
Daniela Ewe ◽  
Manoj Singh ◽  
Subhasish Saha ◽  
...  

Xylitol is a white crystalline, amorphous sugar alcohol and low-calorie sweetener. Xylitol prevents demineralization of teeth and bones, otitis media infection, respiratory tract infections, inflammation and cancer progression. NADPH generated in xylitol metabolism aid in the treatment of glucose-6-phosphate deficiency-associated hemolytic anemia. Moreover, it has a negligible effect on blood glucose and plasma insulin levels due to its unique metabolism. Its diverse applications in pharmaceuticals, cosmetics, food and polymer industries fueled its market growth and made it one of the top 12 bio-products. Recently, xylitol has also been used as a drug carrier due to its high permeability and non-toxic nature. However, it become a challenge to fulfil the rapidly increasing market demand of xylitol. Xylitol is present in fruit and vegetables, but at very low concentrations, which is not adequate to satisfy the consumer demand. With the passage of time, other methods including chemical catalysis, microbial and enzymatic biotransformation, have also been developed for its large-scale production. Nevertheless, large scale production still suffers from high cost of production. In this review, we summarize some alternative approaches and recent advancements that significantly improve the yield and lower the cost of production.


2020 ◽  
Vol 10 (9) ◽  
pp. 3040
Author(s):  
Nádia Correia ◽  
Hugo Pereira ◽  
Joana T. Silva ◽  
Tamára Santos ◽  
Maria Soares ◽  
...  

Bioprospection of novel autochthonous strains is key to the successful industrial-scale production of microalgal biomass. A novel Chlorococcum strain was recently isolated from a pond inside the industrial production facility of Allmicroalgae (Leiria, Portugal). Phylogenetic analysis based on 18S ribosomal ribonucleic acid (rRNA) gene sequences suggests that this isolate is a novel, free-living Oophila amblystomatis strain. However, as our phylogenetic data strongly suggests that the aforementioned taxon belongs to the genus Chlorococcum, it is here proposed to rename this species as Chlorococcum amblystomatis. In order to characterize the biotechnological potential of this novel isolate, growth performance and biochemical composition were evaluated from the pilot (2.5-m3) to industrial (10-m3) scale. The highest maximum areal productivity (36.56 g·m−2·day−1) was reached in a 10-m3 tubular photobioreactor (PBR), as compared to that obtained in a 2.5-m3 PBR (26.75 g·m−2·day−1). Chlorococcum amblystomatis displayed high protein content (48%–56% dry weight (DW)) and moderate levels of total lipids (18%–31% DW), carbohydrates (6%–18% DW) and ashes (9%–16% DW). Furthermore, the lipid profile was dominated by polyunsaturated fatty acids (PUFAs). The highest pigment contents were obtained in the 2.5-m3 PBR, where total chlorophylls accounted for 40.24 mg·g−1 DW, followed by lutein with 5.37 mg·g−1 DW. Overall, this free-living Chlorococcum amblystomatis strain shows great potential for nutritional applications, coupling a promising growth performance with a high protein content as well as relevant amounts of PUFAs, chlorophyll, and carotenoids.


2011 ◽  
Vol 77 (23) ◽  
pp. 8241-8248 ◽  
Author(s):  
Anna Lazzaro ◽  
Andreas Gauer ◽  
Josef Zeyer

ABSTRACTStudies on the effect of environmental conditions on plants and microorganisms are a central issue in ecology, and they require an adequate experimental setup. A strategy often applied in geobotanical studies is based on the reciprocal transplantation of plant species at different sites. We adopted a similar approach as a field-based tool to investigate the relationships of soil bacterial communities with the environment. Soil samples from two different (calcareous and siliceous) unvegetated glacier forefields were reciprocally transplanted and incubated for 15 months between 2009 and 2010. Controls containing local soils were included. The sites were characterized over time in terms of geographical (bedrock, exposition, sunlight, temperature, and precipitation) and physicochemical (texture, water content, soluble and nutrients) features. The incubating local (“home”) and transplanted (“away”) soils were monitored for changes in extractable nutrients and in the bacterial community structure, defined through terminal restriction fragment length polymorphism (T-RFLP) of the 16S rRNA gene. Concentrations of soluble ions in most samples were more significantly affected by seasons than by the transplantation. For example, NO3−showed a seasonal pattern, increasing from 1 to 3 μg NO3−(g soil dry weight)−1after the melting of snow but decreasing to <1 μg NO3−(g soil dry weight)−1in autumn. Seasons, and in particular strong precipitation events occurring in the summer of 2010 (200 to 300 mm of rain monthly), were also related to changes of bacterial community structures. Our results show the suitability of this approach to compare responses of bacterial communities to different environmental conditions directly in the field.


Sign in / Sign up

Export Citation Format

Share Document