scholarly journals Penehyclidine hydrochloride ameliorates renal ischemia reperfusion-stimulated lung injury in mice by activating Nrf2 signaling

Bioimpacts ◽  
2021 ◽  
Author(s):  
Qiang Yang ◽  
Lei Li ◽  
Zhaohui Liu ◽  
Chunlei Li ◽  
Lili Yu ◽  
...  

Introduction: Penehyclidine hydrochloride (PHC) is an anticholinergic with anti-inflammatory and anti-oxidation activities. PHC displayed protectivity against renal ischemia reperfusion (RIR) injury. Nevertheless, the precise protectivity of PHC on RIR-induced lung injury remains unknown. Methods: We examined the effects of PHC on RIR-induced lung injury and investigated the underlying mechanism. We induced RIR in mice and administrated PHC to RIR mice. Kidney function was monitored by measuring the blood urea nitrogen (BUN) and creatinine level in serum. We evaluated the lung injury, myeloperoxidase (MPO) activity in lung, pro-inflammatory cytokine level, and oxidative markers in serum and lung tissues. We tested the expression level of nuclear factor erythroid 2-related factor 2 (Nrf-2) and heme oxygenase 1 (HO-1) in lung of RIR mice after PHC treatment. Finally, we evaluated the effects of PHC in RIR Nrf2-/- mice. Results: PHC greatly downregulated the serum levels of BUN, creatinine, IL-6, NO, malondialdehyde (MDA), and matrix metalloproteinase-2. PHC also ameliorated the lung injury, decreased the MPO activity, and suppressed production of IL-6, TNF-α, IFN-γ, MDA, and O2-, while it promoted production of superoxide dismutase (SOD) and catalase (CAT) in lung. PHC improved the production of Nrf2 and HO-1. Conclusion: The protectivity of PHC was absent in Nrf2-/- mice. PHC ameliorated RIR-induced lung injury through Nrf2 pathway.

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ying Jiang ◽  
Zhen Zhou ◽  
Qing-tao Meng ◽  
Qian Sun ◽  
Wating Su ◽  
...  

Objective. Intestinal ischemia reperfusion (II/R) injury plays a critical role in remote organ dysfunction, such as lung injury, which is associated with nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. In the present study, we tested whether ginsenoside Rb1 attenuated II/R induced lung injury by Nrf2/HO-1 pathway.Methods. II/R injury was induced in male C57BL/6J mice by 45 min of superior mesenteric artery (SMA) occlusion followed by 2 hours of reperfusion. Ginsenoside Rb1 was administrated prior to reperfusion with or without ATRA (all-transretinoic acid, the inhibitor of Nrf2/ARE signaling pathway) administration before II/R.Results. II/R induced lung histological injury, which is accompanied with increased levels of malondialdehyde (MDA), interleukin- (IL-) 6, and tumor necrosis factor- (TNF-)αbut decreased levels of superoxide dismutase (SOD) and IL-10 in the lung tissues. Ginsenoside Rb1 reduced lung histological injury and the levels of TNF-αand MDA, as well as wet/dry weight ratio. Interestingly, the increased Nrf2 and HO-1 expression induced by II/R in the lung tissues was promoted by ginsenoside Rb1 treatment. All these changes could be inhibited or prevented by ATRA.Conclusion. Ginsenoside Rb1 is capable of ameliorating II/R induced lung injuries by activating Nrf2/HO-1 pathway.


2021 ◽  
Vol 18 (2) ◽  
pp. 1-34
Author(s):  
Mona Tawfik ◽  
Samy Makary ◽  
Mohammed Keshawy

IntroductionIschemic preconditioning (Ipre) provides protection against renal ischemia-reperfusion (I/R) injury with its associated remote organ damage. This study examined the enhancing protective effect of Ipre with levosimendan or cilostazol in I/R-induced kidney and lung injury in a rat model.Material and methodsRats were divided into: sham-operated, I/R control, Ipre control, I/R + cilostazol or levosimendan and Ipre + cilostazol or levosimendan. Drugs were given 30 min before left renal I/R or 4 cycles of Ipre just before renal ischemia.ResultsThe Ipre combined with the implemented drugs enhanced physio­logical antioxidant defense genes including renal nuclear factor erythroid 2-related factor 2 (Nrf2) and its dependent genes heme oxygenase-1 (HO-1) and NADPH-quinone oxidoreductase-1 (NQO-1) and improved malondialdehyde and superoxide dismutase renal tissue levels. The combined effect improved I/R consequences for blood urea, creatinine, and creatinine clearance and improved blood oxygenation and metabolic acidosis. Moreover, the combination improved the renal soluble intercellular adhesion molecule (ICAM), tumor necrosis factor α (TNF-α) and interlukin-6 (IL-6) with histopathological improvement of tubular necrosis with a decrease in the apoptotic marker caspase-3 and an increase in the anti-apoptotic Bcl-2 expression.ConclusionsCilostazol or levosimendan potentiates the renoprotective effect of Ipre against renal I/R injury, associated with upregulation of antioxidant genes Nrf2, HO-1, and NOQ-1 expression.


Aging ◽  
2020 ◽  
Vol 12 (13) ◽  
pp. 13400-13421 ◽  
Author(s):  
Zhaohui Liu ◽  
Yan Li ◽  
Lili Yu ◽  
Yulin Chang ◽  
Jingui Yu

2015 ◽  
pp. 313-323 ◽  
Author(s):  
A. A. SHOKEIR ◽  
N. BARAKAT ◽  
A. M. HUSSEIN ◽  
A. AWADALLA ◽  
A. M. HARRAZ ◽  
...  

Objectives of the study were to investigate impact of ischemic preconditioning (Ipre) and sulforaphane (SFN) and combination of them on nuclear factor 2 erythroid related factor 2 (Nrf2) gene and its dependent genes, heme oxygenase-1 (HO1) and NADPH-quinone oxidoreductase1 (NQO-1) and inflammatory cytokines TNF-α, IL1β, and intercellular adhesion molecule-1 (ICAM1) and caspase-3 in renal ischemia/reperfusion (I/R) injury. Ninety male Sprague Dawely rats were classified into 5 groups (each consists of 18 rats): sham, control, Ipre, sulforaphane and Sulfo+Ipre. Each group was subdivided into 3 subgroups each containing 6 rats according to time of harvesting kidney and taking blood samples; 24 h, 48 h, and 7 days subgroups. Renal functions including serum creatinine, BUN were measured at basal conditions and by the end of experiment. Expression of Nrf2, HO-1, NQO-1, TNF-α, IL-1β, and ICAM-1 was measured by real time PCR in kidney tissues by the end of experiment. Also, immunohistochemical localization of caspase-3 and chemical assay of malondialdehyde (MDA), GSH and SOD activity were measured in kidney tissues. Both Ipre and SFN improved kidney functions, enhanced the expression of Nrf2, HO-1, and NQO-1, attenuated the expression of inflammatory (TNF-α, IL-1, and ICAM-1) and apoptotic (caspase-3) markers. However, the effect of sulforaphane was more powerful than Ipre. Also, a combination of them caused more improvement in antioxidant genes expression and more attenuation in inflammatory genes but not caspase-3 than each one did separately. Sulforaphane showed more powerful effect in renoprotection against I/R injury than Ipre as well as there might be a synergism between them at the molecular but not at the function level.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Mian Ge ◽  
Chaojin Chen ◽  
Weifeng Yao ◽  
Shaoli Zhou ◽  
Fei Huang ◽  
...  

Aim. To investigate whether overexpression of Brahma-related gene-1 (Brg1) can alleviate lung injury induced by hepatic ischemia/reperfusion (HIR) and its precise mechanism.Methods. Cytomegalovirus-transgenic Brg1-overexpressing (CMV-Brg1) mice and wild-type (WT) C57BL/6 mice underwent HIR. Lung histology, oxidative injury markers, and antioxidant enzyme concentrations in the lung were assessed. The protein expression levels of Brg1, nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NAD(P)H:quinone oxidoreductase 1 (NQO1) in the lung were analyzed by Western blotting.Results. In the WT group, histopathological analysis revealed that lung damage peaked at 6 h after HIR. Meanwhile, the lung reactive oxygen species (ROS) and 8-isoprostane levels were significantly increased. The protein expression of Brg1 in lung tissue decreased to a minimum at 6 h. Overexpression of Brg1 alleviated lung injury and decreased the amounts of oxidative products, including the levels of 8-isoprostane and ROS, as well as the percentage of positive cells for 4-hydroxynonenal (4-HNE) and 8-oxo-2′-deoxyguanosine (8-OHdG). Brg1 overexpression increased the expression and nuclear translocation of Nrf2 as well as activated the antioxidases. In addition, it decreased the expression of inflammatory factors.Conclusion. Overexpression of Brg1 alleviates oxidative lung injury induced by HIR, likely through the Nrf2 pathway.


2016 ◽  
Vol 43 (5) ◽  
pp. 348-353 ◽  
Author(s):  
IGOR NAGAI YAMAKI ◽  
RUY VICTOR SIMÕES PONTES ◽  
FELIPE LOBATO DA SILVA COSTA ◽  
VITOR NAGAI YAMAKI ◽  
RENAN KLEBER COSTA TEIXEIRA ◽  
...  

ABSTRACT Objective: to evaluate the effects of blocking the regulation of vascular tone on the ischemia and reperfusion syndrome in rats through the use of lidocaine in the postconditioning technique. Methods: we randomized 35 rats into seven groups of five animals: Group 1- Control; Group 2- Ischemia and Reperfusion; Group 3- Ischemia, Reperfusion and Saline; Group 4- Ischemic Postconditioning; Group 5- Ischemic Postconditioning and Saline; Group 6- Lidocaine; Group 7- Ischemic Postconditioning and Lidocaine. Except for the control group, all the others were submitted to renal ischemia for 30 minutes. In postconditioning groups, we performed ischemia and reperfusion cycles of five minutes each, applied right after the main ischemia. In saline and lidocaine groups, we instilled the substances at a rate of two drops per minute. To compare the groups, we measured serum levels of urea and creatinine and also held renal histopathology. Results: The postconditioning and postconditioning + lidocaine groups showed a decrease in urea and creatinine values. The lidocaine group showed only a reduction in creatinine values. In histopathology, only the groups submitted to ischemic postconditioning had decreased degree of tubular necrosis. Conclusion: Lidocaine did not block the effects of postconditioning on renal ischemia reperfusion syndrome, and conferred better glomerular protection when applied in conjunction with ischemic postconditioning.


2019 ◽  
Vol 5 (2) ◽  
pp. e19-e19
Author(s):  
Leila Mohmoodnia ◽  
Sarina Safari Ahmadvand ◽  
Sahar Koushki ◽  
Behrooz Farzan ◽  
Sajad Papi ◽  
...  

Introduction: Renal ischemia reperfusion injury is one of the main causes of acute renal failure, which is associated with high mortality. Tissue damage caused by ischemia-reperfusion occurs due to the release of oxygen free radicals. Type I angiotensin receptor antagonists such as valsartan can be useful in the treatment of chronic kidney disease and hypertension. Objectives: We aimed to evaluate the protective effect of valsartan against renal ischemia reperfusion via antioxidant property and nitric oxide (NO) signaling pathway. Materials and Methods: Fifty male Wistar rats (220±10 g) were randomly divided into five groups as follows: Group 1; healthy rats without ischemia-reperfusion (control group). Group 2; rats with ischemia reperfusion (IR) (IR control group). Group 3; rats with IR which received 30 mg/kg valsartan orally. Group 4; rats with IR which received 30 mg/kg valsartan together with 40 mg/kg L-NAME. Group 5; rats with IR which received 30 mg/kg valsartan together with 40 mg/kg L-arginine. To induce ischemia-reperfusion, rats were anesthetized with thiopental and underwent surgery. Then, we induced ischemia with blocking blood vessels for 45 minutes by clamping. Biochemical parameters including urea and creatinine were measured using commercial kits. Oxidative stress and inflammatory parameters were measured by ELISA method. Renal tissues were stained with hematoxylin and eosin. Finally, the Kolmogorov-Smirnov test was used to determine the normal distribution of data. Results: The findings of this study indicated that treatment with valsartan and valsartan plus L-arginine leads to significant decrease in the serum levels of creatinine, urea, and albumin/creatinine, malondialdehyde (MDA), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) in contrast to IR control group which has increased level of these parameters. On the other hand, treatment with valsartan and valsartan plus L-arginine lead to increase in the serum levels of glutathione peroxidase (GPX), in contrast to ischemia reperfusion control group. Conclusion: Our data revealed that valsartan as a type I angiotensin receptor antagonist could decrease oxidative stress and inflammation due to renal ischemia reperfusion injury. Hence, valsartan could propose as a therapeutic agent for kidney diseases such as renal ischemia-reperfusion injury regarded to these renoprotective effects.


2020 ◽  
Vol 19 (3) ◽  
pp. 255-260
Author(s):  
Fan Yang ◽  
Lu Deng ◽  
MuHu Chen ◽  
Ying Liu ◽  
Jianpeng Zheng

Acute lung injury initiated systemic inflammation leads to sepsis. Septic mice show a series of degenerative changes in lungs as demonstrated by pulmonary congestion, alveolar collapse, inflammatory cell infiltration, and increased wet-todry weight in lungs. 6-Gingerol ameliorates histopathological changes and clinical outcome of the sepsis. The increase in the levels of tumor necrosis factor-α, interleukin-1 beta, interleukin-6, and interleukin-18 in septic mice were reduced by administration with 6-Gingerol. Also, 6-Gingerol attenuates sepsis-induced increase of malonaldehyde and decrease of catalase, superoxide, and glutathione. Enhanced phospho-p65, reduced nuclear factor erythropoietin-2-related factor 2, and heme oxygenase 1 in septic mice were reversed by administration with 6-Gingerol. In conclusion, 6-Gingerol demonstrates anti-inflammatory and antioxidant effects against sepsis associated acute lung injury through inactivation of nuclear factor-kappa B and activation of nuclear-factor erythroid 2-related factor 2 pathways.


2006 ◽  
Vol 100 (5) ◽  
pp. 1590-1595 ◽  
Author(s):  
Jeffrey M. Dodd-o ◽  
Maria L. Hristopoulos ◽  
Laura E. Welsh-Servinsky ◽  
Clarke G. Tankersley ◽  
David B. Pearse

Ischemia-reperfusion (I/R) lung injury is characterized by increased pulmonary endothelial permeability and edema, but the genetic basis for this injury is unknown. We utilized an in vivo mouse preparation of unilateral lung I/R to evaluate the genetic determinants of I/R lung injury. An index of pulmonary vascular protein permeability was measured by the ratio of left-to-right lung Evans blue dye of eight inbred mouse strains after 30 min of left lung ischemia and 150 min of reperfusion. The order of strain-specific sensitivity to I/R lung injury was BALB/c < SJL/J < CBA/J < C57BL/6J < 129/J < A/J < C3H/H3J < SWR/J. The reciprocal F1 offspring of the BALB/c and SWR/J progenitor strains had intermediate phenotypes but a differing variance. A similar pattern of right lung Evans blue dye content suggested the presence of contralateral injury because baseline vascular permeability was not different. Lung I/R injury was attenuated by NADPH oxidase inhibition, indicating a role for NADPH oxidase-derived reactive oxygen species (ROS). There was no strain-dependent difference in lung NADPH oxidase expression. Strain-related differences in zymosan-stimulated neutrophil ROS production did not correlate with I/R lung injury in that neutrophil ROS production in SWR/J mice was greater than C57BL/6J but not different from BALB/c mice. These data indicate the presence of a genetic sensitivity to lung I/R injury that involves multiple genes including a maternal-related factor. Although neutrophil-derived ROS production is also modulated by genetic factors, the pattern did not explain the genetic sensitivity to lung I/R injury.


Sign in / Sign up

Export Citation Format

Share Document