scholarly journals Molecular Detection of Virulence Factor Glycoprotein (Gp63) of Leishmania spp. in Phlebotomus Sand Flies

Author(s):  
Hadi M. Hamza Al-Mayali ◽  
Ali Jawad Abdulaali Alyasiri

Introduction: Gp63 is the major surface glycoprotein of Leishmania which is prevalent in the promastigote stage of Phlebotomus sergenti. Glycoprotein 63 (gp63) or leishmanolysin is a zinc-dependent metalloprotease found on the surface of Leishmania. It was initially discovered in 1980and described biochemically and genetically as a surface antigen expressed in promastigotes of Leishmania species, having a range of substrates including casein, albumin, fibrinogen, haemoglobin, and gelatin. On the surface of amastigote, GP63 is present at a very low level. Glycoprotein 63 is a zinc-dependent metalloprotease that is active in the pH range of 7–10, which is neutral to alkaline. Materials and Methods: During the study, which was carried out in Al-Muthanna province from July 2017 to August 2018, about 2550 sand fly samples including 719 males and 1633 females were collected. Three species of sand flies were recorded according to morphological features which included Phlebotomus papatasi, Phlebotomus sergenti, and Sergentomyia sintoni. The caught specimens showed that P. papatasi was the most prevalent species. Two primers were used for the diagnosis of Leishmania spp. using a nested PCR technique, which was designed in a previous study for 1250 samples of sand flies from 25 locations in the study area. Results: Results showed that 13 samples were positive, containing DNA for the Leishmania parasite, and 12 samples were negative. Positive samples include 11 samples of L. major species and only 2 samples of L. tropica species. Additionally, the results showed that the L. major species was the dominant species in the study area. Positive samples (13) of sand flies had Leishmania parasite based on molecular diagnosis and virulence factor gene (Gp63) of Leishmania parasite was detected in sand flies using PCR method The results showed that virulence factor gene (Gp63) was detected on the surface of promastigote. This refers to the presence of Leishmania parasite in sand fly. The study is the first one which detected the presence of the virulence factors gene (GP63) of Leishmania in the body of sand flies. Conclusion: This study revealed the possibility of diagnosing leishmaniasis by virulence factor gene (Gp63) in leishmania promastigotes.

2015 ◽  
Vol 2015 ◽  
pp. 1-4 ◽  
Author(s):  
Fatima Zahra Talbi ◽  
Abdelhakim El Ouali Lalami ◽  
Abdellatif Janati Idrissi ◽  
Faiza Sebti ◽  
Chafika Faraj

Cutaneous leishmaniases (CL) are endemic in Morocco. They are common in the human population in different localities such as Aichoun in Sefrou province, Morocco. This study was carried out in Aichoun locality from April to October 2012 in order to study the spatiotemporal trends of the main Leishmania phlebotomine vectors in this focus. Overall, 1171 sand flies, belonging to four species, were collected by sticky traps. Phlebotomus sergenti was the predominant species (78.4%) followed by Ph. perniciosus (10.5%), Ph. papatasi (7.94%), and Ph. longicuspis (3.16%). Sandflies were active during 6 months (May–October). Ph. sergenti, Ph. perniciosus, and Ph. papatasi displayed a bimodal distribution with a first peak in July and a second peak in September, while Ph. longicuspis showed a monophasic trend with a peak in August. The high abundance and the lengthy period of activity of Ph. sergenti and Ph. perniciosus, vectors of L. tropica and L. infantum, respectively, are a cause for concern as they indicate the high potential risk of Leishmania transmission in the studied areas.


Odontology ◽  
2020 ◽  
Vol 109 (1) ◽  
pp. 18-28
Author(s):  
Vijay M. Kumbar ◽  
Malleswara Rao Peram ◽  
Manohar S. Kugaji ◽  
Tejas Shah ◽  
Sanjivani P. Patil ◽  
...  

Parasitology ◽  
2012 ◽  
Vol 139 (6) ◽  
pp. 726-734 ◽  
Author(s):  
LUCIE LANTOVA ◽  
PETR VOLF

SUMMARYPsychodiella sergenti is a recently described specific pathogen of the sand fly Phlebotomus sergenti, the main vector of Leishmania tropica. The aim of this study was to examine the life cycle of Ps. sergenti in various developmental stages of the sand fly host. The microscopical methods used include scanning electron microscopy, transmission electron microscopy and light microscopy of native preparations and histological sections stained with periodic acid-Schiff reaction. Psychodiella sergenti oocysts were observed on the chorion of sand fly eggs. In 1st instar larvae, sporozoites were located in the ectoperitrophic space of the intestine. No intracellular stages were found. In 4th instar larvae, Ps. sergenti was mostly located in the ectoperitrophic space of the intestine of the larvae before defecation and in the intestinal lumen of the larvae after defecation. In adults, the parasite was recorded in the body cavity, where the sexual development was triggered by a bloodmeal intake. Psychodiella sergenti has several unique features. It develops sexually exclusively in sand fly females that took a bloodmeal, and its sporozoites bear a distinctive conoid (about 700 nm long), which is more than 4 times longer than conoids of the mosquito gregarines.


Author(s):  
Léo Nava Piorsky Dominici Cruz ◽  
Luis Fernando Carvalho-Costa ◽  
José Manuel Macário Rebêlo

Abstract Wolbachia pipientis (Hertig) is an endosymbiotic microorganism widespread among arthropods and other invertebrate hosts, and employed in strategies to reduce the incidence of arthropod-borne diseases. Here, we used a PCR-based approach for 16S RNA and wsp genes to investigate the prevalence, geographical distribution, and strains of Wolbachia in sand flies (Diptera: Psychodidae: Phlebotominae), the main vectors of the causative agents of leishmaniasis, from three biomes in Brazil: Amazon, Cerrado, and Caatinga. We found that: 1) Wolbachia DNA is present in most (66.7%) of the sampled sand fly species, including vectors of Leishmania spp. (Ross, Trypanosomatida: Trypanosomatidae), 2) the prevalence of Wolbachia DNA varies among species and populations, 3) some strains of Wolbachia may have wider geographical and host range in South America, and 4) two phylogenetic distinct wsp sequences might represent two novel strains for Wolbachia in South America sand flies. Those findings increase the basic knowledge about Wolbachia in South American sand flies and might foster further researches on its use to reduce the transmission of sand fly-borne parasites.


2021 ◽  
Vol 10 (14) ◽  
pp. e596101422480
Author(s):  
Paula Fassicolo Variza ◽  
Thiago Nunes Pereira ◽  
Joice Guilherme de Oliveira ◽  
Millena Fernandes ◽  
Daniel Moreira de Avelar ◽  
...  

The family Psychodidae has a cosmopolitan distribution with members that occur in many habitats, mainly in humid environments, and is most diverse in the tropics. Subfamilies Sycoracinae and Phlebotominae have females with hematophagous habits and the latter studied more due to medical and veterinary interest, since it includes species that can transmit diseases to animals and humans. The knowledge about the sand fly fauna in a region is extremely important for adequate monitoring and control measures for leishmaniasis. Thus, the objective of this study was to characterize Psychodidae fauna in relation to richness, abundance and molecular identification of Leishmania spp. in sand flies in southern Santa Catarina, Brazil. The ollections were carried out between 2015 and 2016 in three cities in Santa Catarina, Brazil. Samples were taken near feeding places for domestic animals, urban forest and peridomicile areas. The insects were identified and female sand flies were submitted to molecular analysis to detect the presence of Leishmania spp.. A total of 4,200 insects were collected, 4,193 from the Sycoracinae subfamily and 7 Phlebotominae from the Nyssomyia neivai and Pintomyia fisheri species. Of the studied municipalities, sandflies were registered in Tubarão and Imaruí and the most frequent habitat was the peridomicile areas. No samples were positive for Leishmania spp. In conclusion, the work highlights the presence of two species of sandflies, which were recorded for the first time in southern Santa Catarina.


2006 ◽  
Vol 72 (10) ◽  
pp. 6680-6686 ◽  
Author(s):  
Peter Schierack ◽  
Hartmut Steinrück ◽  
Sylvia Kleta ◽  
Wilfried Vahjen

ABSTRACT Nonpathogenic, intestinal Escherichia coli (commensal E. coli) supports the physiological intestinal balance of the host, whereas pathogenic E. coli with typical virulence factor gene profiles can cause severe outbreaks of diarrhea. In many reports, E. coli isolates from diarrheic animals were classified as putative pathogens. Here we describe a broad variety of virulence gene-positive E. coli isolates from swine with no clinical signs of intestinal disease. The isolation of E. coli from 34 pigs from the same population and the testing of 331 isolates for genes encoding heat-stable enterotoxins I and II, heat-labile enterotoxin I, Shiga toxin 2e, and F4, F5, F6, F18, and F41 fimbriae revealed that 68.6% of the isolates were positive for at least one virulence gene, with a total of 24 different virulence factor gene profiles, implying high rates of horizontal gene transfer in this E. coli population. Additionally, we traced the occurrence of hemolytic E. coli over a period of 1 year in this same pig population. Hemolytic isolates were differentiated into seven clones; only three were found to harbor virulence genes. Hemolytic E. coli isolates without virulence genes or with only the fedA gene were found to be nontypeable by slide agglutination tests with OK antisera intended for screening live cultures against common pathogenic E. coli serogroups. The results appear to indicate that virulence gene-carrying E. coli strains are a normal part of intestinal bacterial populations and that high numbers of E. coli cells harboring virulence genes and/or with hemolytic activity do not necessarily correlate with disease.


Sign in / Sign up

Export Citation Format

Share Document