scholarly journals Evolution and emplacement of Archaean terranes in the Kapisigdlit area, southern West Greenland

1988 ◽  
Vol 140 ◽  
pp. 59-64
Author(s):  
C.R.L Friend ◽  
A.P Nutman

In the Godthåbsfjord region, early Archaean Arnitsoq gneisses are found in association with the middle Archaean Nûk gneisses (McGregor, 1973). Early models of crustal evolution in the Godthåbsfjord region suggested that the Amitsoq gneisses were reworked in a major crustal accretion-differentiation event, which was marked by the injection of the voluminous Nûk gneisses (e.g. Bridgwater et al., 1974; McGregor, 1979; Moor- - bath et al., 1986). This event ,has been interpreted as having culminated in a granulite-amphibolite facies metamorphic event at c. 2800 Ma, which outlasted all significant ductile deformation (e.g. Wells, 1979; Coe, 1980).

2003 ◽  
Vol 75 (1) ◽  
pp. 109-128 ◽  
Author(s):  
LÉO A. HARTMANN ◽  
FARID CHEMALE-JÚNIOR

Valuable information is retrieved from the integrated investigation of the field relationships, microstructure and mineral compositions of harzburgites from the Neoproterozoic Cerro Mantiqueiras Ophiolite. This important tectonic marker of the geological evolution of southernmost Brazilian Shield was thoroughly serpentinized during progressive metamorphism, because the oldest mineral assemblage is: olivine + orthopyroxene + tremolite + chlorite + chromite. This M1 was stabilized in mid amphibolite facies - 550-600ºC as calculated from mineral equilibria. No microstructural (e.g. ductile deformation of olivine or chromite) or compositional (e.g. mantle spinel) remnant of mantle history was identified. A metamorphic event M2 occurred in the low amphibolite facies along 100 m-wide shear zones, followed by intense serpentinization (M3) and narrow 1-3 m-wide shear zones (M4) containing asbestos.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-22 ◽  
Author(s):  
Ane K. Engvik ◽  
Heinrich Taubald ◽  
Arne Solli ◽  
Tor Grenne ◽  
Håkon Austrheim

New stable isotopic data from mineral separates of albite, scapolite, amphibole, quartz, and calcite of metasomatic rocks (Bamble lithotectonic domain) give increased knowledge on fluid type, source, and evolution during metamorphism. Albite from a variety of albitites givesδ18OSMOWvalues of 5.1–11.1‰, while quartz from clinopyroxene-bearing albitite gives 11.5–11.6‰.δ18OSMOWvalues for calcite samples varies between 3.4 and 12.4‰and shows more consistentδ13C values of −4.6 to-6.0‰. Amphibole from scapolite metagabbro yields aδ18OSMOWvalue of 4.3 to 6.7‰andδDSMOWvalue of −84 to −50‰, while the scapolite givesδ18OSMOWvalues in the range of 7.4 to10.6‰. These results support the interpretation that the original magmatic rocks were metasomatised by seawater solutions with a possible involvement from magmatic fluids. Scapolitisation and albitisation led to contrasting chemical evolution with respect to elements like P, Ti, V, Fe, and halogens. The halogens deposited as Cl-scapolite were dissolved by albitisation fluid and reused as a ligand for metal transport. Many of the metal deposits in the Bamble lithotectonic domain, including Fe-ores, rutile, and apatite deposits formed during metasomatism. Brittle to ductile deformation concurrent with metasomatic infiltration illustrates the dynamics and importance of metasomatic processes during crustal evolution.


2007 ◽  
Vol 79 (3) ◽  
pp. 441-455 ◽  
Author(s):  
Cláudia R. Passarelli ◽  
Miguel A.S. Basei ◽  
Hélcio J. Prazeres-Filho ◽  
Oswaldo Siga-Jr. ◽  
Gergely A.J. Szabó ◽  
...  

The Juréia Massif, southeastern São Paulo State (Brazil), is part of the Registro Domain, limited to the north by the Cubatão-Itariri Shear System and to the south by the Serrinha Shear Zone. Mostly composed of migmatitic granitegneiss rocks, represents a Paleoproterozoic terrane (1.9-2.2 Ga) strongly deformed during the Neoproterozoic (750-580 Ma). The present tectonic scenario was established at the end of the Neoproterozoic, as a result of collages associated with the formation of Western Gondwana. The Ponta da Juréia, our study area within the Juréia Massif, is constituted by paragneisses (garnet-muscovite-biotite gneisses). The monazite U-Pb age of 750 Ma is related to a main regional metamorphic event that reached the high amphibolite facies, recorded in rocks from the Itatins Complex and Cachoeira Sequence as well, which also belongs to the Registro Domain. The paragneissic rocks of this study are affected by the E-W-trending Serrinha Shear Zone, registering a predominantly dextral movement. Biotite K-Ar ages of 482 ± 12 Ma may represent later movements and reflect the younger ages of reactivation of the major lineaments and juxtaposition of the tectonic blocks involved.


2006 ◽  
Vol 11 ◽  
pp. 145-162 ◽  
Author(s):  
Kai Sørensen ◽  
John A. Korstgård ◽  
William E. Glassley ◽  
Bo Møller Stensgaard

The Nordre Strømfjord shear zone in the fjord Arfersiorfik, central West Greenland, consists of alternating panels of supracrustal rocks and orthogneisses which together form a vertical zone up to 7 km wide with sinistral transcurrent, ductile deformation, which occurred under middle amphibolite facies conditions. The pelitic and metavolcanic schists and paragneisses are all highly deformed, while the orthogneisses appear more variably deformed, with increasing deformation evident towards the supracrustal units. The c. 1.92 Ga Arfersiorfik quartz diorite is traceable for a distance of at least 35 km from the Inland Ice towards the west-south-west. Towards its northern contact with an intensely deformed schist unit it shows a similar pattern of increasing strain, which is accompanied by chemical and mineralogical changes. The metasomatic changes associated with the shear zone deformation are superimposed on a wide range of original chemical compositions, which reflect magmatic olivine and/ or pyroxene as well as hornblende fractionation trends. The chemistry of the Arfersiorfik quartz diorite suite as a whole is comparable to that of Phanerozoic plutonic and volcanic rocks of calc-alkaline affinity.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xu Kong ◽  
Xueyuan Qi ◽  
Wentian Mi ◽  
Xiaoxin Dong

We report zircon U–Pb ages and Lu-Hf isotopic data from two sample of the retrograded eclogite in the Chicheng area. Two groups of the metamorphic zircons from the Chicheng retrograded eclogite were identified: group one shows characteristics of depletion in LREE and flat in HREE curves and exhibit no significant Eu anomaly, and this may imply that they may form under eclogite facies metamorphic condition; group two is rich in HREE and shows slight negative Eu anomaly indicated that they may form under amphibolite facies metamorphic condition. Zircon Lu-Hf isotopic of εHf from the Chicheng eclogite has larger span range from 6.0 to 18.0, which suggests that the magma of the eclogite protolith may be mixed with partial crustal components. The peak eclogite facies metamorphism of Chicheng eclogite may occur at 348.5–344.2 Ma and its retrograde metamorphism of amphibolite fancies may occur at ca. 325.0 Ma. The Hongqiyingzi Complex may experience multistage metamorphic events mainly including Late Archean (2494–2448 Ma), Late Paleoproterozoic (1900–1734 Ma, peak age = 1824.6 Ma), and Phanerozoic (495–234 Ma, peak age = 323.7 Ma). Thus, the metamorphic event (348.5–325 Ma) of the Chicheng eclogite is in accordance with the Phanerozoic metamorphic event of the Hongqiyingzi Complex. The eclogite facies metamorphic age of the eclogite is in accordance with the metamorphism (granulite facies or amphibolite facies) of its surrounding rocks, which implied that the tectonic subduction and exhumation of the retrograded eclogite may cause the regional metamorphism of garnet biotite plagioclase gneiss.


1982 ◽  
Vol 110 ◽  
pp. 55-57
Author(s):  
A.A Garde ◽  
V.R McGregor

Previous geological work on the 1:100000 map sheet 64 V.l N (fig. 15) includes published maps of smaller areas by Berthelsen (1960, 1962) and Lauerma (1964), mapping by Kryolitselskabet Øresund A/S (Bridgwater et al., 1976) and mapping by GGU geologists for the 1:500000 map sheet Frederikshåb Isblink - Søndre Strømfjord (Allaart et al., 1977, 1978). The Amltsoq and Niik gneisses and Malene supracrustal rock units south and east of Godthåbsfjord have not so far been correlated with rocks in the Fiskefjord area. Godthåbsfjord separates the granulite facies gneisses in Nordlandet from amphibolite facies Nûk gneisses on Sadelø and Bjørneøen; the granulite facies metamorphism occurred at about 2850 m.y. (Black et al., 1973), while no published isotopic age determinations from the Fiskefjord area itself are available.


2007 ◽  
Vol 153 (1-2) ◽  
pp. 29-45 ◽  
Author(s):  
Tobias Hermansson ◽  
Michael B. Stephens ◽  
Fernando Corfu ◽  
Jenny Andersson ◽  
Laurence Page

1986 ◽  
Vol 50 (356) ◽  
pp. 217-221 ◽  
Author(s):  
A. J. Baker

AbstractAmphibolites from the Grampian Moines of Scotland contain clinopyroxene-plagioclase symplectites and plagioclase-hornblende coronas around garnet. The clinopyroxene-plagioclase symplectites are interpreted as former omphacites. It is inferred that an eclogitic garne-tomphacite-quartz assemblage once existed, but has since undergone partial reaction to an amphibolite facies hornblende-plagioclase assemblage. An early high-pressure metamorphic event occurred in parts of the Moine.


1975 ◽  
Vol 12 (2) ◽  
pp. 158-173 ◽  
Author(s):  
A. Escher ◽  
J. C. Escher ◽  
J. Watterson

The Nagssugtoqidian belt in West Greenland is formed mainly of Archaean rocks which were strongly reworked during the early Proterozoic. Investigation of the southern boundary region has resulted in a model for the tectonic reworking based on the geometry of homogeneous simple shear deformation. Two differently oriented swarms of mainly pre-kinematic dikes are used as strain indicators at the deformation boundary. Gneiss tectonite fabrics have been used to determine that the shear plane dips northwest at 20–40° and that the shear direction along this plane is towards the southeast. The average amount of simple shear strain (S = 6) has been determined from the degree of dike reorientation. This mechanism has resulted in a ductile overthrusting of the reworked rocks over the Archaean foreland, giving a crustal shortening of ca. 66%. The area investigated represents a deep tectonic level. At higher levels ductile deformation would be expected to give way to thrust and fold nappe development. The displacements demonstrated are those which might be expected in the deformed margins of colliding continental plates.


1994 ◽  
Vol 31 (3) ◽  
pp. 583-596 ◽  
Author(s):  
David Corrigan ◽  
Nicholas G. Culshaw ◽  
Jim K. Mortensen

The Parautochthonous Belt in the region of Key Harbour, Ontario, is composed of Early Proterozoic migmatitic para- and orthogneiss and Mid-Proterozoic granitoids, which were reworked during the Grenville orogeny. Grenvillian deformation is localized into anastomosing arrays of high-strain shear zones enclosing elongate bands and lozenges of rock subjected to lower and near-coaxial strain. Crosscutting relationships preserved in the low-strain domains document two pre-Grenvillian plutonic and tectonometamorphic events, which are bracketed in age by U–Pb zircon geochronology. A 1694 Ma leucogranite intrudes, and provides a minimum age for, high metamorphic grade gneisses formed during an earlier tectonometamorphic event (D1–M1). The leucogranite was intruded by mafic dykes, deformed, and metamorphosed at uppermost amphibolite facies during D2–M2, before the emplacement of Mid-Proterozoic granitoids at ca. 1450 Ma. Following the emplacement of gabbro dykes and pods at ca. 1238 Ma, the area was overprinted by granulite to uppermost amphibolite facies metamorphism (Grenvillian), for which monazites provide a minimum age of ca. 1035 Ma. Titanite U–Pb ages of 1003 – 1004 Ma record cooling through 600 °C. A regionally important swarm of east–west-trending posttectonic pegmatite dykes dated by U–Pb zircon at 990 Ma provides a minimum age for Grenvillian ductile deformation. The present data support the contention that the Parautochthonous Belt in the Key Harbour area consists in part of reworked midcontinental crust of Early to Mid-Proterozoic age.


Sign in / Sign up

Export Citation Format

Share Document