CDIP observations of recent extreme wave conditions on U.S. coasts

Shore & Beach ◽  
2021 ◽  
pp. 41-45
Author(s):  
James Behrens ◽  
Ross Timmerman ◽  
Eric Terrill ◽  
Sophia Merrifield ◽  
Robert Jensen

The Coastal Data Information Program (CDIP) maintains wave gauge stations for continuous coverage, with precision instruments and dedicated telemetry and dissemination infrastructure. Decades of this persistent, quality-controlled wave monitoring effort has provided the data required to generate metrics for wave climate at coastal locations across the United States and identify and characterize extreme wave events. During the extremely active 2020 North Atlantic hurricane season, the CDIP East Coast array recorded significantly elevated wave conditions generated by no fewer than 15 named storms. In California, meanwhile, long-term monitoring stations have measured new all-time maximum wave heights during recent storm events. Complete quality-controlled directional spectra and displacement data sets, as well as sea surface temperature and surface current data from the wave buoys, are publicly available at http://cdip.ucsd.edu.

2011 ◽  
Vol 9 (1-2) ◽  
pp. 58-69
Author(s):  
Marlene Kim

Asian Americans and Pacific Islanders (AAPIs) in the United States face problems of discrimination, the glass ceiling, and very high long-term unemployment rates. As a diverse population, although some Asian Americans are more successful than average, others, like those from Southeast Asia and Native Hawaiians and Pacific Islanders (NHPIs), work in low-paying jobs and suffer from high poverty rates, high unemployment rates, and low earnings. Collecting more detailed and additional data from employers, oversampling AAPIs in current data sets, making administrative data available to researchers, providing more resources for research on AAPIs, and enforcing nondiscrimination laws and affirmative action mandates would assist this population.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hector Lobeto ◽  
Melisa Menendez ◽  
Iñigo J. Losada

AbstractExtreme waves will undergo changes in the future when exposed to different climate change scenarios. These changes are evaluated through the analysis of significant wave height (Hs) return values and are also compared with annual mean Hs projections. Hourly time series are analyzed through a seven-member ensemble of wave climate simulations and changes are estimated in Hs for return periods from 5 to 100 years by the end of the century under RCP4.5 and RCP8.5 scenarios. Despite the underlying uncertainty that characterizes extremes, we obtain robust changes in extreme Hs over more than approximately 25% of the ocean surface. The results obtained conclude that increases cover wider areas and are larger in magnitude than decreases for higher return periods. The Southern Ocean is the region where the most robust increase in extreme Hs is projected, showing local increases of over 2 m regardless the analyzed return period under RCP8.5 scenario. On the contrary, the tropical north Pacific shows the most robust decrease in extreme Hs, with local decreases of over 1.5 m. Relevant divergences are found in several ocean regions between the projected behavior of mean and extreme wave conditions. For example, an increase in Hs return values and a decrease in annual mean Hs is found in the SE Indian, NW Atlantic and NE Pacific. Therefore, an extrapolation of the expected change in mean wave conditions to extremes in regions presenting such divergences should be adopted with caution, since it may lead to misinterpretation when used for the design of marine structures or in the evaluation of coastal flooding and erosion.


2016 ◽  
Vol 33 (6) ◽  
pp. 1097-1111 ◽  
Author(s):  
Erick Fredj ◽  
Hugh Roarty ◽  
Josh Kohut ◽  
Michael Smith ◽  
Scott Glenn

AbstractHigh-frequency radar (HFR) surface current data are an increasingly utilized tool for capturing complex dynamics of coastal ocean systems worldwide. The radar is uniquely capable of sampling relevant temporal and spatial scales of nearshore processes that impact event response activities and basic coastal ocean research. HFR is a shore-based remote sensing system and is therefore subject to data gaps, which are predominately due to environmental effects, like increased external noise or low signal due to ocean surface conditions. Many applications of these surface current data require that these gaps be filled, such as Lagrangian numerical models, to estimate material transport and dispersion. This study introduces a new penalized least squares regression method based on a three-dimensional discrete cosine transform method to reconstruct hourly HFR surface current data with a horizontal resolution of 6 km. The method explicitly uses both time and space variability to predict the missing value. Furthermore, the method is fast, robust, and requires relatively low computer memory storage. This paper evaluates the method against two scenarios of common data gaps found in HFR networks currently deployed around the world. The validation is based on observed surface current maps along the mid-Atlantic coast of the United States with specific vectors removed to replicate these common gap scenarios. The evaluation shows that the new method is robust and particularly well suited to fill a more common scenario with complete data coverage surrounding an isolated data gap. It is shown that the real-time application of the method is suitable for filling data gaps in large oceanography datasets with high accuracy.


2012 ◽  
Vol 25 (6) ◽  
pp. 2020-2039 ◽  
Author(s):  
Elodie Charles ◽  
Déborah Idier ◽  
Jérôme Thiébot ◽  
Gonéri Le Cozannet ◽  
Rodrigo Pedreros ◽  
...  

Abstract Climate change impacts on wave conditions can increase the risk of offshore and coastal hazards. The present paper investigates wave climate multidecadal trends and interannual variability in the Bay of Biscay during the past decades (1958–2001). Wave fields are computed with a wave modeling system based on the WAVEWATCH III code and forced by 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) wind fields. It provides both an extended spatiotemporal domain and a refined spatial resolution over the Bay of Biscay. The validation of the wave model is based on 11 buoys, allowing for the use of computed wave fields in the analysis of mean and extreme wave height trends and variability. Wave height, period, and direction are examined for a large array of wave conditions (by seasons, high percentiles of wave heights, different periods). Several trends for recent periods are identified, notably an increase of summer significant wave height, a southerly shift of autumn extreme wave direction, and a northerly shift of spring extreme wave direction. Wave fields exhibit high interannual variability, with a normalized standard deviation of seasonal wave height greater than 15% in wintertime. The relationship with Northern Hemisphere teleconnection patterns is investigated at regional scale, especially along the coast. It highlights a strong correlation between local wave conditions and the North Atlantic Oscillation and the east Atlantic pattern indices. This relationship is further investigated at the local scale with a new method based on bivariate diagrams, allowing the identification of the type of waves (swell, storm, intermediate waves) impacted. These results are discussed in terms of comparison with previous studies and coastal risk implications.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Adam Gauci ◽  
Aldo Drago ◽  
John Abela

High frequency (HF) radar installations are becoming essential components of operational real-time marine monitoring systems. The underlying technology is being further enhanced to fully exploit the potential of mapping sea surface currents and wave fields over wide areas with high spatial and temporal resolution, even in adverse meteo-marine conditions. Data applications are opening to many different sectors, reaching out beyond research and monitoring, targeting downstream services in support to key national and regional stakeholders. In the CALYPSO project, the HF radar system composed of CODAR SeaSonde stations installed in the Malta Channel is specifically serving to assist in the response against marine oil spills and to support search and rescue at sea. One key drawback concerns the sporadic inconsistency in the spatial coverage of radar data which is dictated by the sea state as well as by interference from unknown sources that may be competing with transmissions in the same frequency band. This work investigates the use of Machine Learning techniques to fill in missing data in a high resolution grid. Past radar data and wind vectors obtained from satellites are used to predict missing information and provide a more consistent dataset.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii466-iii466
Author(s):  
Karina Black ◽  
Jackie Middleton ◽  
Sunita Ghosh ◽  
David Eisenstat ◽  
Samor Patel

Abstract BACKGROUND Proton therapy for benign and malignant tumors has dosimetric and clinical advantages over photon therapy. Patients in Alberta, Canada are referred to the United States for proton treatment. The Alberta Heath Care Insurance Plan (AHCIP) pays for the proton treatment and the cost of flights to and from the United States (direct costs). This study aimed to determine the out-of-pocket expenses incurred by patients or their families (indirect costs). METHODS Invitation letters linked to an electronic survey were mailed to patients treated with protons between 2008 and 2018. Expenses for flights for other family members, accommodations, transportation, food, passports, insurance, and opportunity costs including lost wages and productivity were measured. RESULTS Fifty-nine invitation letters were mailed. Seventeen surveys were completed (28.8% response rate). One paper survey was mailed at participant request. Nine respondents were from parent/guardian, 8 from patients. All patients were accompanied to the US by a family member/friend. Considerable variability in costs and reimbursements were reported. Many of the accompanying family/friends had to miss work; only 3 patients themselves reported missed work. Time away from work varied, and varied as to whether it was paid or unpaid time off. CONCLUSIONS Respondents incurred indirect monetary and opportunity costs which were not covered by AHCIP when traveling out of country for proton therapy. Prospective studies could help provide current data minimizing recall bias. These data may be helpful for administrators in assessing the societal cost of out-of-country referral of patients for proton therapy.


1998 ◽  
Vol 27 (3) ◽  
pp. 351-369 ◽  
Author(s):  
MICHAEL NOBLE ◽  
SIN YI CHEUNG ◽  
GEORGE SMITH

This article briefly reviews American and British literature on welfare dynamics and examines the concepts of welfare dependency and ‘dependency culture’ with particular reference to lone parents. Using UK benefit data sets, the welfare dynamics of lone mothers are examined to explore the extent to which they inform the debates. Evidence from Housing Benefits data show that even over a relatively short time period, there is significant turnover in the benefits-dependent lone parent population with movement in and out of income support as well as movement into other family structures. Younger lone parents and owner-occupiers tend to leave the data set while older lone parents and council tenants are most likely to stay. Some owner-occupier lone parents may be relatively well off and on income support for a relatively short time between separation and a financial settlement being reached. They may also represent a more highly educated and highly skilled group with easier access to the labour market than renters. Any policy moves paralleling those in the United States to time limit benefit will disproportionately affect older lone parents.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 509 ◽  
Author(s):  
Rosa Molina ◽  
Giorgio Manno ◽  
Carlo Lo Re ◽  
Giorgio Anfuso ◽  
Giuseppe Ciraolo

This paper investigates wave climate and storm characteristics along the Mediterranean coast of Andalusia, for the period 1979–2014, by means of the analysis of wave data on four prediction points obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF). Normally, to characterize storms, researchers use the so-called “power index”. In this paper, a different approach was adopted based on the assessment of the wave energy flux of each storm, using a robust definition of sea storm. During the investigated period, a total of 2961 storm events were recorded. They were classified by means of their associated energy flux into five classes, from low- (Class I) to high-energetic (Class V). Each point showed a different behavior in terms of energy, number, and duration of storms. Nine stormy years, i.e., years with a high cumulative energy, were recorded in 1980, 1983, 1990, 1992, 1995, 2001, 2008, 2010, and 2013.


2005 ◽  
Vol 128 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Gaelle Duclos ◽  
Aurelien Babarit ◽  
Alain H. Clément

Considered as a source of renewable energy, wave is a resource featuring high variability at all time scales. Furthermore wave climate also changes significantly from place to place. Wave energy converters are very often tuned to suit the more frequent significant wave period at the project site. In this paper we show that optimizing the device necessitates accounting for all possible wave conditions weighted by their annual occurrence frequency, as generally given by the classical wave climate scatter diagrams. A generic and very simple wave energy converter is considered here. It is shown how the optimal parameters can be different considering whether all wave conditions are accounted for or not, whether the device is controlled or not, whether the productive motion is limited or not. We also show how they depend on the area where the device is to be deployed, by applying the same method to three sites with very different wave climate.


Sign in / Sign up

Export Citation Format

Share Document