scholarly journals Storm Energy Flux Characterization along the Mediterranean Coast of Andalusia (Spain)

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 509 ◽  
Author(s):  
Rosa Molina ◽  
Giorgio Manno ◽  
Carlo Lo Re ◽  
Giorgio Anfuso ◽  
Giuseppe Ciraolo

This paper investigates wave climate and storm characteristics along the Mediterranean coast of Andalusia, for the period 1979–2014, by means of the analysis of wave data on four prediction points obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF). Normally, to characterize storms, researchers use the so-called “power index”. In this paper, a different approach was adopted based on the assessment of the wave energy flux of each storm, using a robust definition of sea storm. During the investigated period, a total of 2961 storm events were recorded. They were classified by means of their associated energy flux into five classes, from low- (Class I) to high-energetic (Class V). Each point showed a different behavior in terms of energy, number, and duration of storms. Nine stormy years, i.e., years with a high cumulative energy, were recorded in 1980, 1983, 1990, 1992, 1995, 2001, 2008, 2010, and 2013.

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 460
Author(s):  
Takvor H. Soukissian ◽  
Flora E. Karathanasi

In the context of wave resource assessment, the description of wave climate is usually confined to significant wave height and energy period. However, the accurate joint description of both linear and directional wave energy characteristics is essential for the proper and detailed optimization of wave energy converters. In this work, the joint probabilistic description of wave energy flux and wave direction is performed and evaluated. Parametric univariate models are implemented for the description of wave energy flux and wave direction. For wave energy flux, conventional, and mixture distributions are examined while for wave direction proven and efficient finite mixtures of von Mises distributions are used. The bivariate modelling is based on the implementation of the Johnson–Wehrly model. The examined models are applied on long-term measured wave data at three offshore locations in Greece and hindcast numerical wave model data at three locations in the western Mediterranean, the North Sea, and the North Atlantic Ocean. A global criterion that combines five individual goodness-of-fit criteria into a single expression is used to evaluate the performance of bivariate models. From the optimum bivariate model, the expected wave energy flux as function of wave direction and the distribution of wave energy flux for the mean and most probable wave directions are also obtained.


2020 ◽  
Vol 50 (2) ◽  
pp. 531-534
Author(s):  
Theodore S. Durland ◽  
J. Thomas Farrar

AbstractLonguet-Higgins in 1964 first pointed out that the Rossby wave energy flux as defined by the pressure work is not the same as that defined by the group velocity. The two definitions provide answers that differ by a nondivergent vector. Longuet-Higgins suggested that the problem arose from ambiguity in the definition of energy flux, which only impacts the energy equation through its divergence. Numerous authors have addressed this issue from various perspectives, and we offer one more approach that we feel is more succinct than previous ones, both mathematically and conceptually. We follow the work described by Cai and Huang in 2013 in concluding that there is no need to invoke the ambiguity offered by Longuet-Higgins. By working directly from the shallow-water equations (as opposed to the more involved quasigeostrophic treatment of Cai and Huang), we provide a concise derivation of the nondivergent pressure work and demonstrate that the two energy flux definitions are equivalent when only the divergent part of the pressure work is considered. The difference vector comes from the nondivergent part of the geostrophic pressure work, and the familiar westward component of the Rossby wave group velocity comes from the divergent part of the geostrophic pressure work. In a broadband wave field, the expression for energy flux in terms of a single group velocity is no longer meaningful, but the expression for energy flux in terms of the divergent pressure work is still valid.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 2999
Author(s):  
Rosa Molina ◽  
Giorgio Manno ◽  
Carlo Lo Re ◽  
Giorgio Anfuso ◽  
Giuseppe Ciraolo

In the original article [...]


Author(s):  
Marilda Azulay Tapiero ◽  
Vicente Mas Llorens

The system of tourist settlements on the Mediterranean coast presents a great complexity, as well as its geographical, landscape, morphological, urban and architectural conditions like for the varied way of relating to it the social and economic groups involved. The purpose of the communication is to expose the research about the need and the possibility of actions providing tourist settlements with urban and territorial cohesion, and enabling new proposals where what is decisive is not only acting on the parties but, globally, on the conditions that defines the scenes of action. In order to deal with the complexity of the tourist development on the Valencian Mediterranean coast, we proposed, as a first step, the identification of settlement types where, contrary to the buildings type, it will be necessary to apply mechanisms that take into account there are structures in the process of evolution. As Giorgio Grassi (1973) already said, a classification is not a type but allows an approximation to it. This has allowed the development of a “Typological Map of Tourist Settlements in the Comunidad Valenciana” where situate case studies while reading the territory as a whole and each settlement in relation to others settlements. A map to add data, based on the definition of parameters related to structure, urban form and architecture, but also to the relationship with the coastal physical environment, and selected for their capacity to provide data for the research purposes.


2021 ◽  
Author(s):  
Khalid AMAROUCHE ◽  
Bilal Bingölbali ◽  
Adem Akpinar

Abstract This study presents a detailed analysis of changes in wind and wave climate in the Western Mediterranean Sea (WMed), based on 41 years of accurate wind and wave hindcasts. The purpose of this research is to assess the magnitude of recent changes in wave climate and to locate the coastal areas most affected by these changes. Starting from the Theil-Sen slope estimator and the Mann Kendall test, trends in mean and Max significant wave heights (SWH) and wind speed (WS) are analyzed simultaneously on seasonal and annual scales. Thus, the new wave records observed since 2010 have been located spatially and temporally using a simple spatial analysis method, while the increases in maximum wave heights over the last decade have been estimated and mapped. This work was motivated by evidence pointed out by several authors concerning the influence of global climate change on the local climate in the Mediterranean Sea and by the increase in the number and intensity of wave storm events over recent years. Several exceptional storms have recently been observed along the Mediterranean coasts, including storm Adrian in 2018 and storm Gloria in 2020, which resulted in enormous damage along the French and Spanish coasts. The results of the present study reflect a worrying situation in a large part of the WMed coasts. Most of the WMed basin experiences a significant increasing trend in the annual Max of SWH and WS with evident inter-seasonal variability that underlines the importance of multi-scale analysis to assess wind and wave trends. Since 2013, about half of the WMed coastline has experienced records in wave climate, not recorded at least since 1979, and several areas have experienced three successive records. Several WMed coasts are experiencing a worrying evolution of the wave climate, which requires a serious mobilization to prevent probable catastrophic wave storms and ensure sustainable and economic development.


2010 ◽  
Vol 261 ◽  
pp. 103-112 ◽  
Author(s):  
Omran E. Frihy ◽  
Essam A. Deabes ◽  
Ahmed A. El Gindy

2021 ◽  
Vol 21 (1) ◽  
pp. 219-238
Author(s):  
Marc Sanuy ◽  
Jose A. Jiménez

Abstract. A probabilistic estimation of hazards based on the response approach requires assessing large amounts of source characteristics, representing an entire storm climate. In addition, the coast is a dynamic environment, and factors such as existing background erosion trends require performing risk analyses under different scenarios. This work applies Bayesian networks (BNs) following the source–pathway–receptor–consequence scheme aiming to perform a probabilistic risk characterisation at the Tordera delta (NE Spain). One of the main differences of the developed BN framework is that it includes the entire storm climate (all recorded storm events, 179 in the study case) to retrieve the integrated and conditioned risk-oriented results at individually identified receptors (about 4000 in the study case). Obtained results highlight the storm characteristics with higher probabilities to induce given risk levels for inundation and erosion, as well as how these are expected to change under given scenarios of shoreline retreat due to background erosion. As an example, storms with smaller waves and from secondary incoming direction will increase erosion and inundation risks at the study area. The BNs also output probabilistic distributions of the different risk levels conditioned to given distances to the beach inner limit, allowing for the definition of probabilistic setbacks. Under current conditions, high and moderate inundation risks, as well as direct exposure to erosion can be reduced with a small coastal setback (∼10 m), which needs to be increased up to 20–55 m to be efficient under future scenarios (+20 years).


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 333 ◽  
Author(s):  
Carlo Re ◽  
Giorgio Manno ◽  
Giuseppe Ciraolo ◽  
Giovanni Besio

This paper presents the estimation of the wave energy potential around the Aegadian islands (Italy), carried out on the basis of high resolution wave hindcast. This reanalysis was developed employing Weather Research and Forecast (WRF) and WAVEWATCH III ® models for the modelling of the atmosphere and the waves, respectively. Wave climate has been determined using the above-mentioned 32-year dataset covering the years from 1979 to 2010. To improve the information about wave characteristics regarding spatial details, i.e., increasing wave model resolution, especially in the nearshore region around the islands, a SWAN (Simulating WAves Nearshore) wave propagation model was used. Results obtained through the development of the nearshore analysis detected four energetic hotspots close to the coast of the islands. Near Marettimo island, only one hotspot was detected with a maximum wave energy flux of 9 kW/m, whereas, around Favignana, three hotspots were identified with a maximum wave energy flux of 6.5 kW/m. Such values of available wave energy resource are promising to develop different projects for wave energy converters in specific areas along the coast, in order to improve the energetic independence of Aegadian islands.


2011 ◽  
Vol 11 (3) ◽  
pp. 905-914 ◽  
Author(s):  
C. Vella ◽  
F. Demory ◽  
V. Canut ◽  
P. Dussouillez ◽  
T. J. Fleury

Abstract. An accumulation of boulders was recently discovered along the rocky coast of the Gulf of Fos located in Provence, in an area exposed to a south-westerly wave regime. The coast around this locality forms the western extremity of the calcareous Nerthe range between Marseille and the Rhône Delta. Several mega blocks are scattered to a distance of 30 m behind the coast line. The largest block (33.5 tonnes) has been transported about 39 m inland, up to about 2 m a.s.l. On the Mediterranean coast, the origin of such blocks is often attributed to tsunami-generated waves, but in the case examined here, although the origin is unclear, the differences in surface state between boulders indicates several events generated by south-westerly storms. Radiocarbon dating on several different shells collected from seven different boulders yields a wide dispersion of ages ranging from 4000 BP to the Modern Period. The differences in surface appearance, as well as the differences of fauna conservation and surface coloration, in some cases in a very fresh state, along with the dispersion of radiocarbon ages, suggest that historic storm events have affected these megablocks.


Sign in / Sign up

Export Citation Format

Share Document