scholarly journals The Load Distribution with Modification and Misalignment and Thermal Elastohydrodynamic Lubrication Simulation of Helical Gears

Author(s):  
Jian-hua Xue ◽  
Zhen-hua Zhang ◽  
Huan-rui Wang

A non-uniform model of the load per unit of length distribution of helical gear with modification and misalignment was proposed based on the meshing stiffness, transmission error, and load-balanced equation. The distribution of unit-lineload, transmission error (TE), and contact press of any point on the contact plane were calculated by the numerical method. The feature coordinate system was put forward to implement the helical preliminary design and strength rating.The thermal elastohydrodynamic lubrication (EHL) model of helical gear was established, and the pressure, film, and temperature fields were obtained from the thermal EHL model.The maximum contact temperature and minimum film thickness solved by thermal EHL were applied to check the scuffing load capacity. The highest flash temperature and thinnest film occur in the dedendum of the pinion. The thermal EHL method to evaluate the scuffing load capacity is effective.

Author(s):  
Hao Dong ◽  
Yue Bi ◽  
bo Wen ◽  
Zhen-bin Liu ◽  
Li-bang Wang

The double-helical gear system was widely used in ship transmission. In order to study the influence of backlash on the nonlinear frequency response characteristics of marine double-helical gear system, according to the structural characteristics of double-helical gear transmission, considering the time-varying meshing stiffness, backlash, damping, comprehensive transmission error, external load excitation, and other factors, a three-dimensional bending-torsional-axial-pendular coupling nonlinear dynamic modeling and dynamic differential equation of 24-DOF double-helical gear transmission system were established. The Runge–Kutta numerical method was used to analyze the influence of backlash, time-varying meshing stiffness, damping, error and external load excitation on the amplitude frequency characteristics. The results show that the backlash can cause the runout of the double-helical gear system, and the system has first harmonic and second harmonic response. With the increase of backlash, the amplitude of the system increases and the jumping phenomenon remains unchanged. The amplitude frequency response of the system is stimulated by time-varying meshing stiffness and comprehensive transmission error, and restrained by damping and external load excitation. The vibration displacement amplitude of the system increases with the increase of vibration displacement and has little effect on the state change of the system. The vibration test of double-helical gear is carried out. The frequency response components obtained by numerical simulation are basically consistent with the experimental results, which proves the correctness of the theoretical calculation. It provides a technical basis for the study of vibration and noise reduction performance of double-helical gear.


2018 ◽  
Vol 153 ◽  
pp. 03005 ◽  
Author(s):  
Jianying Li ◽  
Zhiyong Xu ◽  
Qingchun Hu ◽  
Changfu Zong ◽  
Tianjun Zhu

The transmission structure of a 2K-H multistage micro-planetary gear transmission reducer is described in detail, and three assumptions are supposed in dynamic modelling. On basis of these assumptions, a three stages 2K-H micro-planetary gear transmission dynamic model is established, in which the relative displacement each meshing gear pairs can be obtained after including the comprehensive transmission error. According to gear kinematics, the friction arms between the sun gear, the ring gear and the nth planet are also obtained, and the friction coefficient in the mixed elastohydrodynamic lubrication is considered, the transmission system motion differential equations are obtained, including above factors and the time-varying meshing stiffness, damping and backlash, inter-stage coupling stiffness, it can be provided an theoretical foundation for further analysing the parameter sensitivity, dynamic stability and designing.


2010 ◽  
Vol 97-101 ◽  
pp. 2764-2769
Author(s):  
Si Yu Chen ◽  
Jin Yuan Tang ◽  
C.W. Luo

The effects of tooth modification on the nonlinear dynamic behaviors are studied in this paper. Firstly, the static transmission error under load combined with misalignment error and modification are deduced. These effects can be introduced directly in the meshing stiffness and static transmission error models. Then the effect of two different type of tooth modification combined with misalignment error on the dynamic responses are investigated by using numerical simulation method. The numerical results show that the misalignment error has a significant effect on the static transmission error. The tooth crowning modification is generally preferred for absorbing the misalignment error by comparing with the tip and root relief. The tip and root relief can not resolve the vibration problem induced by misalignment error but the crowning modification can reduce the vibration significantly.


2021 ◽  
Vol 166 ◽  
pp. 104476
Author(s):  
Chanho Choi ◽  
Hyoungjong Ahn ◽  
Young-jun Park ◽  
Geun-ho Lee ◽  
Su-chul Kim

Author(s):  
R. G. Munro ◽  
L Morrish ◽  
D Palmer

This paper is devoted to a phenomenon known as corner contact, or contact outside the normal path of contact, which can occur in spur and helical gear transmission systems under certain conditions. In this case, a change in position of the driven gear with respect to its theoretical position takes place, thus inducing a transmission error referred to here as the transmission error outside the normal path of contact (TEo.p.c). The paper deals with spur gears only, but the results are directly applicable to helical gears. It systematizes previous knowledge on this subject, suggests some further developments of the theory and introduces the novel phenomenon of top contact. The theoretical results are compared with experimental measurements using a single flank tester and a back-to-back dynamic test rig for spur and helical gears, and they are in good agreement. Convenient approximate equations for calculation of TEo.p.c suggested here are important for analysis of experimental data collected in the form of Harris maps. This will make possible the calculation of tooth stiffness values needed for use in theoretical models for spur and helical gear transmission systems.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Fengxia Lu ◽  
Xuechen Cao ◽  
Weiping Liu

AbstractA 16-degree-of-freedom dynamic model for the load contact analysis of a double helical gear considering sliding friction is established. The dynamic equation is solved by the Runge–Kutta method to obtain the vibration displacement. The method combines the friction coefficient model based on the elastohydrodynamic lubrication theory with the dynamic model, which provides a theoretical basis for the calculation of the power loss of the transmission system. Moreover, the sensitivity analysis of the parameters that affect the transmission efficiency is carried out, and an optimization method of meshing efficiency is proposed without reducing the bending strength of the gears. This method can directly guide the design of the double helical gear transmission system.


Author(s):  
Ahmet Kahraman

Abstract In this paper, the dynamic behavior of a multi-mesh helical gear train is studied. The gear train consists of three helical gears, with one of the gears in mesh with the other two. An 18-degree-of-freedom dynamic model which includes transverse, torsional, axial and rotational (rocking) motions of the flexibly mounted gears is developed. Two different loading conditions are identified. For case I, the system is driven by the gear in the middle, and for case II, the system is driven by one of the gears at either end of the gear train. Gear mesh phases under each loading condition are determined. The natural modes are predicted, and effects of the helix angle and the loading condition on the natural modes are explained. The forced response, which includes dynamic mesh and bearing forces, due to the static transmission error excitation is found. Effects of loading conditions and asymmetric positioning on the response are also explored. The results suggest that the dynamic forces are lower if the number of teeth of the gear in the middle is (i) an odd number for case I type loading, and (ii) an even number for case II type loading.


Lubricants ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 78 ◽  
Author(s):  
Gregory de Boer ◽  
Andreas Almqvist

A two-scale method for modelling the Elastohydrodynamic Lubrication (EHL) of tilted-pad bearings is derived and a range of solutions are presented. The method is developed from previous publications and is based on the Heterogeneous Multiscale Methods (HMM). It facilitates, by means of homogenization, incorporating the effects of surface topography in the analysis of tilted-pad bearings. New to this article is the investigation of three-dimensional bearings, including the effects of both ideal and real surface topographies, micro-cavitation, and the metamodeling procedure used in coupling the problem scales. Solutions for smooth bearing surfaces, and under pure hydrodynamic operating conditions, obtained with the present two-scale EHL model, demonstrate equivalence to those obtained from well-established homogenization methods. Solutions obtained for elastohydrodynamic operating conditions, show a dependency of the solution to the pad thickness and load capacity of the bearing. More precisely, the response for the real surface topography was found to be stiffer in comparison to the ideal. Micro-scale results demonstrate periodicity of the flow and surface topography and this is consistent with the requirements of the HMM. The means of selecting micro-scale simulations based on intermediate macro-scale solutions, in the metamodeling approach, was developed for larger dimensionality and subsequent calibration. An analysis of the present metamodeling approach indicates improved performance in comparison to previous studies.


Sign in / Sign up

Export Citation Format

Share Document