scholarly journals Effects of Connected and Automated Vehicles in a Cooperative Environment

2020 ◽  
pp. 21-28
Author(s):  
Ondrej Pribyl

Cooperative and automated vehicles (CAVs) are often considered a mean to improve quality of life in cities, the traffic flow parameters in particular. This paper provides some evidence based on microscopic traffic simulation on how the effects can really be. Important is that the particular use cases are not built in vehicles only. We focus on so called cooperative environment and advanced traffic control measures.This paper describes the impact of CAVs on a cooperative urban environment, resulting from a European research project - MAVEN. We clearly demonstrate that a proper integration of CAVs into city traffic management can, for example, help with respect to the environmental goals and reduce CO2 emissions by up to 12 % (a combination of GLOSA and signal optimization). On corridors with a green wave, a capacity increase of up to 34% was achieved. Already for lower penetra- tion rates (20% penetration of CAVs), there are significant improvements in traffic performance. For example, platooning leads to a decrease of CO2 emissions of 2,6 % or an impact indicator by 17,7%.

2015 ◽  
Vol 42 (7) ◽  
pp. 477-489 ◽  
Author(s):  
Ying Luo ◽  
M. Hadiuzzaman ◽  
Jie Fang ◽  
Tony Z. Qiu

Over the past few decades, several active traffic control methods have been proposed to improve freeway efficiency at bottleneck locations. Variable speed limit (VSL) is one of these effective controls. Previous studies have evaluated VSL control, but primarily during recurrent congestion only. This study focuses on evaluating the performance of VSL control for both recurrent and non-recurrent congestion. To assess the effectiveness of a previously proposed VSL control in a real-world situation, this study has three evaluation objectives: (1) examine the control performance when recurrent and (or) non-recurrent congestion occurs; (2) assess the effectiveness of the control when a queue encounters the VSL sign; and (3) consider the impact of system detection delay in VSL control. Comparative experiments for Whitemud Drive in Edmonton, Alberta, Canada, are simulated in the VISSIM platform, and traffic performance is compared among scenarios with and without control. The simulation results show that VSL improves mobility for both recurrent and non-recurrent congestion. The VSL control reduces total travel time, and improves total travel distance and total flow. Furthermore, it slows down the shockwave propagation speed, improves the average speed on most of the freeway segments, and reduces the duration of traffic recovery.


2009 ◽  
Vol 62 (4) ◽  
pp. 555-570 ◽  
Author(s):  
Peter Brooker

It is now widely recognised that a paradigm shift in air traffic control concepts is needed. This requires state-of-the-art innovative technologies, making much better use of the information in the air traffic management (ATM) system. These paradigm shifts go under the names of NextGen in the USA and SESAR in Europe, which inter alia will make dramatic changes to the nature of airport operations. A vital part of moving from an existing system to a new paradigm is the operational implications of the transition process. There would be business incentives for early aircraft fitment, it is generally safer to introduce new technologies gradually, and researchers are already proposing potential transition steps to the new system. Simple queuing theory models are used to establish rough quantitative estimates of the impact of the transition to a more efficient time-based – four-dimensional (4D) – navigational and ATM system. Such models are approximate, but they do offer insight into the broad implications of system change and its significant features. 4D-equipped aircraft in essence have a contract with the airport runway – they would be required to turn up at a very precise time – and, in return, they would get priority over any other aircraft waiting for use of the runway. The main operational feature examined here is the queuing delays affecting non-4D-equipped arrivals. These get a reasonable service if the proportion of 4D-equipped aircraft is low, but this can deteriorate markedly for high proportions, and be economically unviable. Preventative measures would be to limit the additional growth of 4D-equipped flights and/or to modify their contracts to provide sufficient space for the non-4D-equipped flights to operate without excessive delays. There is a potential for non-Poisson models, for which there is little in the literature, and for more complex models, e.g. grouping a succession of 4D-equipped aircraft as a batch.


Author(s):  
Zihan Hong ◽  
Hani S. Mahmassani ◽  
Xiang Xu ◽  
Archak Mittal ◽  
Ying Chen ◽  
...  

This paper presents the development, implementation, and evaluation of predictive active transportation and demand management (ATDM) and weather-responsive traffic management (WRTM) strategies to support operations for weather-affected traffic conditions with traffic estimation and prediction system models. First, the problem is defined as a dynamic process of traffic system evolution under the impact of operational conditions and management strategies (interventions). A list of research questions to be addressed is provided. Second, a systematic framework for implementing and evaluating predictive weather-related ATDM strategies is illustrated. The framework consists of an offline model that simulates and evaluates the traffic operations and an online model that predicts traffic conditions and transits information to the offline model to generate or adjust traffic management strategies. Next, the detailed description and the logic design of ATDM and WRTM strategies to be evaluated are proposed. To determine effectiveness, the selection of strategy combination and sensitivity of operational features are assessed with a series of experiments implemented with a locally calibrated network in the Chicago, Illinois, area. The analysis results confirm the models’ ability to replicate observed traffic patterns and to evaluate the system performance across operational conditions. The results confirm the effectiveness of the predictive strategies tested in managing and improving traffic performance under adverse weather conditions. The results also verify that, with the appropriate operational settings and synergistic combination of strategies, weather-related ATDM strategies can generate maximal effectiveness to improve traffic performance.


2020 ◽  
Vol 54 (4) ◽  
pp. 882-896 ◽  
Author(s):  
Stefano Starita ◽  
Arne K. Strauss ◽  
Xin Fei ◽  
Radosav Jovanović ◽  
Nikola Ivanov ◽  
...  

In air traffic management, a fundamental decision with large cost implications is the planning of future capacity provision. Here, capacity refers to the available man-hours of air traffic controllers to monitor traffic. Airspace can be partitioned in various ways into a collection of sectors, and each sector has a fixed maximum number of flights that may enter within a given time period. Each sector also requires a fixed number of man-hours to be operated; we refer to them as sector-hours. Capacity planning usually takes place a long time ahead of the day of operation to ensure that sufficiently many air traffic controllers are available to manage the flow of aircrafts. However, at the time of planning, there is considerable uncertainty regarding the number and spatiotemporal distribution of nonscheduled flights and capacity provision, the former mainly due to business aviation, and the latter usually stemming from the impact of weather, military use of airspaces, etc. Once the capacity decision has been made (in terms of committing to a budget of sector-hours per airspace to represent long-term staff scheduling), on the day of operation, we can influence traffic by enforcing rerouting and tactical delays. Furthermore, we can modify which sectors to open at a given time (the so-called sector-opening scheme) subject to the fixed capacity budgets in each airspace. The fundamental trade-off is between reducing the capacity provision cost at the expense of potentially increasing displacement cost arising from rerouting or delays. To tackle this, we propose a scalable decomposition approach that exploits the structure of the problem and can take traffic and capacity provision uncertainty into account by working with a large number of traffic scenarios. We propose several decision policies based on the resulting pool of solutions and test them numerically using real-world data.


Smart Cities ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 532-547
Author(s):  
Abu Saleh Md Bakibillah ◽  
Yi Feng Paw ◽  
Md Abdus Samad Kamal ◽  
Susilawati Susilawati ◽  
Chee Pin Tan

Connected and automated vehicle (CAV) technology, along with advanced traffic control systems, cannot ensure congestion-free traffic when the number of vehicles exceeds the road capacity. To address this problem, in this paper, we propose a dynamic ride-sharing system based on incentives (for both passengers and drivers) that incorporates travelers of similar routes and time schedules on short notice. The objective is to reduce the number of private vehicles on urban roads by utilizing the available seats properly. We develop a mobile-cloud architecture-based system that enables real-time ride-sharing. The effectiveness of the proposed system is evaluated through microscopic traffic simulation using Simulation of Urban Mobility (SUMO) considering the traffic flow behavior of a real smart city. Moreover, we develop a lab-scale experimental prototype in the form of Internet of Things (IoT) network. The simulation results show that the proposed system reduces fuel consumption, CO2 and CO emissions, and average waiting time of vehicles significantly, while increasing the vehicle’s average speed. Remarkably, it is found that only 2–10% ride-sharing can improve the overall traffic performance.


Safety ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 41 ◽  
Author(s):  
Pérez-Castán ◽  
Rodríguez-Sanz ◽  
Gómez Comendador ◽  
Arnaldo Valdés

Remotely-piloted aircraft systems (RPASs) present interesting and complex challenges for air traffic management. One of the most critical aspects of the integration of RPASs in non-segregated airspace is safety assessments. This paper lays out a methodology for estimating the minimum protection distance (MPD) that is required to avoid potential conflicts between RPASs and conventional aircraft. The MPD determines the final moment that air traffic control may instruct a RPAS to start climbing with a fixed rate of climb (ROC) to avoid separation minima infringement. The methodology sets out a conflict-resolution algorithm to estimate the MPD. It also models the impact of communication, navigation, and surveillance requirements on the MPD. The main difference between RPASs and conventional aircraft is that the former needs additional communication between the RPAS and pilot in the form of a required Comand and Control link performance (RLP). Finally, the authors carried out Monte Carlo simulations to estimate the value of the MPD only for the head-on encounter, which is the worst scenario. The results showed that the main factors affecting the MPD were RLP and ROC. By increasing RLP and decreasing ROC it was possible to reduce the MPD from 28 to 17 nautical miles; however, the variation in the MPD was not linear.


2015 ◽  
Vol 1 (2) ◽  
pp. 156-171
Author(s):  
Mul Yadi ◽  
Rinto Yulianto ◽  
T.n. Syamsah

ABSTRACT In the exercise of police discretion, the Traffic Unit officers Bogor City Police guided by Article 18 paragraph (2) of Law No. 2 of 2002 on the Indonesian National Police "In the circumstances it is necessary to pay attention to laws and regulations, as well as the Code of Professional Ethics of Indonesian Police". One example of the application of police discretion were conducted by the Traffic Police Unit Bogor City to tackle congestion in the city of Bogor, especially at traffic light Bogor Palace is to regulate traffic density without referring to the traffic light.  Identify the problem in research 1) How does the application of police discretion in setting tasks traffic? 2) What positive and negative impacts discretionary actions carried out by the police in traffic control? The purpose of this study are as follows: 1) To determine and analyze on the application of police discretion in setting tasks traffic, and 2) To determine and analyze the impact of the actions undertaken by the police discretion in the regulation of traffic. The research method used in this research is normative juridical approach that is used legis positivist concept which states that the law is identical with the norms made written and enacted by institutions or authorities. In addition this concept also saw law as a normative system that is autonomous, closed and detached from public life. The conclusion from this study is the adoption of police discretion in the task of traffic management needs to recognize the Professional Ethics of Police, as very fundamental and important and substantial influence on both the poor implementation of police discretion in the regulation of traffic.  Keywords: Discretion Police, Traffic Management


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Johan Olstam ◽  
Fredrik Johansson ◽  
Adriano Alessandrini ◽  
Peter Sukennik ◽  
Jochen Lohmiller ◽  
...  

The introduction of automated vehicles is expected to affect traffic performance. Microscopic traffic simulation offers good possibilities to investigate the potential effects of the introduction of automated vehicles. However, current microscopic traffic simulation models are designed for modelling human-driven vehicles. Thus, modelling the behaviour of automated vehicles requires further development. There are several possible ways to extend the models, but independent of approach a large problem is that the information available on how automated vehicles will behave is limited to today’s partly automated vehicles. How future generations of automated vehicles will behave will be unknown for some time. There are also large uncertainties related to what automation functions are technically feasible, allowed, and actually activated by the users, for different road environments and at different stages of the transition from 0 to 100% of automated vehicles. This article presents an approach for handling several of these uncertainties by introducing conceptual descriptions of four different types of driving behaviour of automated vehicles (Rail-safe, Cautious, Normal, and All-knowing) and presents how these driving logics can be implemented in a commonly used traffic simulation program. The driving logics are also linked to assumptions on which logic that could operate in which environment at which part of the transition period. Simulation results for four different types of road facilities are also presented to illustrate potential effects on traffic performance of the driving logics. The simulation results show large variations in throughput, from large decreases to large increases, depending on driving logic and penetration rate.


2019 ◽  
Vol 2 (1) ◽  
pp. 29
Author(s):  
Edi Hardi Suntoyo ◽  
Ahmad Ridwan ◽  
Sigit Winarto

Responding to the development of the brown village tourist area in Golodok Blorok Kademnagan Blitar, it will cause seizures that have an impact on decreasing the performance of roads and intersections around the area, and cause a high level of accidents. can minimize the decline in the performance of roads and intersections and reduce or minimize the occurrence of accidents of visitors to the brown village area, and can provide solutions to traffic problems that occur due to the development of brown village tourism. The method used in this research is based on the Indonesian Road Capacity Manual (MKJI 1997) and other related regulations. This reliable step begins with conducting a traffic survey in the area that has been determined and asks for data on the number of visitors and the number of vehicles parked for 1 year to the manager of the Brown Village tourist area which then estimates the trip generation and sets the andalalin classification. After that, analyze the traffic performance on existing conditions and analyze the conditions of traffic management without and with regional development, as well as develop alternative improvements to the impact of traffic due to the development of the brown village tourist area.Menyikapi berkembangnya kawasan wisata kampung coklat di jl Golodok Blorok Kademnagan Blitar , akan menimbulkan bangkitan yang berdampak pada penurunan kinerja ruas jalan dan simpang di sekitar kawasan tersebut, serta menimbulkan tingkat kecelakaan yang tinggi, Untuk itu perlu di lakukan Analisis Dampak Lalu Lintas (Andalalin) agar dapat meminimalisir penurunan kinerja ruas jalan dan simpangdanmengurangiatauminimalisirterjadinyakecelakaanpengunjungkawasan kampong coklat, serta dapat memberikan solusi pemecahan masalah lalu lintas yang terjadi akibat pengembangan wisata kampung coklat. Metode yang digunakan pada penelitia ini didasarkan pada Manual Kapasitas Jalan Indonesia (MKJI 1997) dan peraturan terkait lainya.Tahapan andalalin ini diawali dengan melakukan survei lalu lintas di area yang sudah di tentukan dan meminta data jumlah pengunjung serta jumlah kendaraan yang parkir selama 1 tahun kepada pengelola Kawasan wisata kampong coklat yang selanjutnya memperkirakan bangkitan perjalanan dan menetapkan klasifikasi andalalin. Setelah itu , menganalisa kinerja lalu lintas pada kondisi eksisting dan menganalisa pada kondisi manajemen  lalu lintas tanpa dan dengan pengembangan kawasan , serta menyusun alternatif perbaikan terhadap dampak lalu lintas akibat pengembangan kawasan wisata kampung coklat tersebut.


2022 ◽  
Vol 14 (1) ◽  
pp. 474
Author(s):  
Xiaoyuan Wang ◽  
Shijie Liu ◽  
Huili Shi ◽  
Hui Xiang ◽  
Yang Zhang ◽  
...  

Lane Utilization Ratio (LUR), affected by lane selection behavior directly, represents the traffic distribution on different lanes of road section for a single direction. The research on LUR, especially under Penetration Conditions of Connected and Automated Vehicles (PCCAV), is not comprehensive enough. Considering the difficulty in the conduction of real vehicle experiment and data collection under PPCAV, the lane selection model based on phase-field coupling and set pair logic, which considers the full-information of lanes, was used to carry out microscopic traffic simulation. From the analysis of microsimulation results, the basic relationships between Penetration of Connected and Automated Vehicles (PCAV), traffic volume, and Lane-Changing Times, also that between PCAV, traffic volume, and LUR in the basic section of the urban expressway were studied. Moreover, the influence of driving propensity on the effect of PCAVs was also studied. The research results could enrich the traffic flow theory and provide the theoretical basis for traffic management and control.


Sign in / Sign up

Export Citation Format

Share Document