Analytical approach while studying equations of boundary layer impulses at the flow in the inter-blade channel of gas turbines

2021 ◽  
Vol 28 (1) ◽  
pp. 45-60
Author(s):  
Alexander Kishkin ◽  
Alexander Zuev ◽  
Alexander Delkov ◽  
Yulia Shevchenko
Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 567
Author(s):  
Xudong Jiang ◽  
Yihao Tang ◽  
Zhaohui Liu ◽  
Venkat Raman

When operating under lean fuel–air conditions, flame flashback is an operational safety issue in stationary gas turbines. In particular, with the increased use of hydrogen, the propagation of the flame through the boundary layers into the mixing section becomes feasible. Typically, these mixing regions are not designed to hold a high-temperature flame and can lead to catastrophic failure of the gas turbine. Flame flashback along the boundary layers is a competition between chemical reactions in a turbulent flow, where fuel and air are incompletely mixed, and heat loss to the wall that promotes flame quenching. The focus of this work is to develop a comprehensive simulation approach to model boundary layer flashback, accounting for fuel–air stratification and wall heat loss. A large eddy simulation (LES) based framework is used, along with a tabulation-based combustion model. Different approaches to tabulation and the effect of wall heat loss are studied. An experimental flashback configuration is used to understand the predictive accuracy of the models. It is shown that diffusion-flame-based tabulation methods are better suited due to the flashback occurring in relatively low-strain and lean fuel–air mixtures. Further, the flashback is promoted by the formation of features such as flame tongues, which induce negative velocity separated boundary layer flow that promotes upstream flame motion. The wall heat loss alters the strength of these separated flows, which in turn affects the flashback propensity. Comparisons with experimental data for both non-reacting cases that quantify fuel–air mixing and reacting flashback cases are used to demonstrate predictive accuracy.


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 146 ◽  
Author(s):  
Aaron Endres ◽  
Thomas Sattelmayer

Boundary layer flashback from the combustion chamber into the premixing section is a threat associated with the premixed combustion of hydrogen-containing fuels in gas turbines. In this study, the effect of pressure on the confined flashback behaviour of hydrogen-air flames was investigated numerically. This was done by means of large eddy simulations with finite rate chemistry as well as detailed chemical kinetics and diffusion models at pressures between 0 . 5 and 3 . It was found that the flashback propensity increases with increasing pressure. The separation zone size and the turbulent flame speed at flashback conditions decrease with increasing pressure, which decreases flashback propensity. At the same time the quenching distance decreases with increasing pressure, which increases flashback propensity. It is not possible to predict the occurrence of boundary layer flashback based on the turbulent flame speed or the ratio of separation zone size to quenching distance alone. Instead the interaction of all effects has to be accounted for when modelling boundary layer flashback. It was further found that the pressure rise ahead of the flame cannot be approximated by one-dimensional analyses and that the assumptions of the boundary layer theory are not satisfied during confined boundary layer flashback.


Author(s):  
Rainer Kurz ◽  
Grant Musgrove ◽  
Klaus Brun

Fouling of compressor blades is an important mechanism leading to performance deterioration in gas turbines over time. Experimental and simulation data are available for the impact of specified amounts of fouling on performance, as well as the amount of foulants entering the engine for defined air filtration systems and ambient conditions. This study provides experimental data on the amount of foulants in the air that actually stick to a blade surface for different conditions of the blade surface. Quantitative results both indicate the amount of dust as well as the distribution of dust on the airfoil, for a dry airfoil, as well as airfoils that were wet from ingested water, as well as different types of oil. The retention patterns are correlated with the boundary layer shear stress. The tests show the higher dust retention from wet surfaces compared to dry surfaces. They also provide information about the behavior of the particles after they impact on the blade surface, showing that for a certain amount of wet film thickness, the shear forces actually wash the dust downstream, and off the airfoil. Further, the effect of particle agglomeration of particles to form larger clusters was observed, which would explain the disproportional impact of very small particles on boundary layer losses.


Author(s):  
Dominik Ebi ◽  
Peter Jansohn

Abstract Operating stationary gas turbines on hydrogen-rich fuels offers a pathway to significantly reduce greenhouse gas emissions in the power generation sector. A key challenge in the design of lean-premixed burners, which are flexible in terms of the amount of hydrogen in the fuel across a wide range and still adhere to the required emissions levels, is to prevent flame flashback. However, systematic investigations on flashback at gas turbine relevant conditions to support combustor development are sparse. The current work addresses the need for an improved understanding with an experimental study on boundary layer flashback in a generic swirl burner up to 7.5 bar and 300° C preheat temperature. Methane-hydrogen-air flames with 50 to 85% hydrogen by volume were investigated. High-speed imaging was applied to reveal the flame propagation pathway during flashback events. Flashback limits are reported in terms of the equivalence ratio for a given pressure, preheat temperature, bulk flow velocity and hydrogen content. The wall temperature of the center body along which the flame propagated during flashback events has been controlled by an oil heating/cooling system. This way, the effect any of the control parameters, e.g. pressure, had on the flashback limit was de-coupled from the otherwise inherently associated change in heat load on the wall and thus change in wall temperature. The results show that the preheat temperature has a weaker effect on the flashback propensity than expected. Increasing the pressure from atmospheric conditions to 2.5 bar strongly increases the flashback risk, but hardly affects the flashback limit beyond 2.5 bar.


Author(s):  
Joshua B. Anderson ◽  
John W. McClintic ◽  
David G. Bogard ◽  
Thomas E. Dyson ◽  
Zachary Webster

The use of compound-angled shaped film cooling holes in gas turbines provides a method for cooling regions of extreme curvature on turbine blades or vanes. These configurations have received surprisingly little attention in the film cooling literature. In this study, a row of laid-back fanshaped holes based on an open-literature design, were oriented at a 45-degree compound angle to the approaching freestream flow. In this study, the influence of the approach flow boundary layer thickness and character were experimentally investigated. A trip wire and turbulence generator were used to vary the boundary layer thickness and freestream conditions from a thin laminar boundary layer flow to a fully turbulent boundary layer and freestream at the hole breakout location. Steady-state adiabatic effectiveness and heat transfer coefficient augmentation were measured using high-resolution IR thermography, which allowed the use of an elevated density ratio of DR = 1.20. The results show adiabatic effectiveness was generally lower than for axially-oriented holes of the same geometry, and that boundary layer thickness was an important parameter in predicting effectiveness of the holes. Heat transfer coefficient augmentation was highly dependent on the freestream turbulence levels as well as boundary layer thickness, and significant spatial variations were observed.


Author(s):  
Vera Hoferichter ◽  
Thomas Sattelmayer

Lean premixed combustion is prevailing in gas turbines to minimize nitrogen oxide emissions. However, this technology bears the risk of flame flashback and thermoacoustic instabilities. Thermoacoustic instabilities induce velocity oscillations at the burner exit which, in turn, can trigger flame flashback. This article presents an experimental study at ambient conditions on the effect of longitudinal acoustic excitation on flashback in the boundary layer of a channel burner. The acoustic excitation simulates the effect of thermoacoustic instabilities. Flashback limits are determined for different excitation frequencies characterizing intermediate frequency dynamics in typical gas turbine combustors (100–350 Hz). The excitation amplitude is varied from 0% to 36% of the burner bulk flow velocity. For increasing excitation amplitude, the risk of flame flashback increases. This effect is strongest at low frequencies. For increasing excitation frequency, the influence of the velocity oscillations decreases as the flame has less time to follow the changes in bulk flow velocity. Two different flashback regimes can be distinguished based on excitation amplitude. For low excitation amplitudes, flashback conditions are reached if the minimum flow velocity in the excitation cycle falls below the flashback limit of unexcited unconfined flames. For higher excitation amplitudes, where the flame starts to periodically enter the burner duct, flashback is initiated if the maximum flow velocity in the excitation cycle is lower than the flashback limit of confined flames. Consequently, flashback limits of confined flames should also be considered in the design of gas turbine burners as a worst case scenario.


2021 ◽  
Author(s):  
Kazuki Yamamoto ◽  
Ryota Uehara ◽  
Shohei Mizuguchi ◽  
Masahiro Miyabe

Abstract High efficiency is strongly demanded for gas turbines to reduce CO2 emissions. In order to improve the efficiency of gas turbines, the turbine inlet temperature is being raised higher. In that case, the turbine blade loading is higher and secondary flow loss becomes a major source of aerodynamic losses due to the interaction between the horseshoe vortex and the strong endwall cross flow. One of the authors have optimized a boundary layer fence which is a partial vane to prevent cross-flow from pressure-side to suction-side between blade to blade. However, it was also found that installing the fence leads to increase another loss due to tip vortex, wake and viscosity. Therefore, in this paper, we focused on the endwall contouring and the positive effect findings from the boundary layer fence were used to study its optimal shape. Firstly, the relationship between the location of the endwall contouring and the internal flow within the turbine cascade was investigated. Two patterns of contouring were made, one is only convex and another is just concave, and the secondary flow behavior of the turbine cascade was investigated respectively. Secondly, the shape was designed and the loss reduction effect was investigated by using optimization method. The optimized shape was manufactured by 3D-printer and experiment was conducted using cascade wind tunnel. The total pressure distributions were measured and compared with CFD results. Furthermore, flow near the endwall and the internal flow of the turbine cascade was experimentally visualized. The internal flow in the case of a flat wall (without contouring), with a fence, and with optimized endwall contouring were compared by experiment and CFD to extract the each feature.


Author(s):  
L. J. DuRocher ◽  
Hugo Giannotti

The air cleaner requirements for Army vehicular gas turbines are developed and performance of the novel boundary-layer ballistic type separator is discussed. A unit specifically designed for gas turbines demonstrates high performance. This separator is compared and field results are included.


Sign in / Sign up

Export Citation Format

Share Document