scholarly journals Three Concentric Tube Heat Exchange With NTU-Effective Method

2021 ◽  
Vol 10 (3) ◽  
pp. 99-104
Author(s):  
Liyun Arun Hutagalung

Heat exchanger is an exchange device with three concentric pipe tubes with direct flow used to reduce hot fluid to cold fluid using cold water fluid. the research was carried out triple pipes that flowed in the same direction with 3 variationsin the temperature pipe of the hot water fluid th with a temperature of 50oC, 55oC and 60oC with temperature of cold water fluid tc 25oC and this study used a flow rate of 0.000025 m3/s = 0.000033 m3/s and 0.000041 m3/s.The results of this study showed that the equilibrium temperature obtained from the experimental results of the effectiveness of the one-way pipeline flow was 1 = 32.99% the effectiveness of thr second channel pipe of 2 = 66.48% and ont the effectiveness of the third channel pipe of 3 = 33.57% 3rd data with a debut of 0.000025 m3/s and the effectiveness of the opposite flow the channel one pipe is 1 = 55.16% on the effectiveness of the second channel pipe of 2 = 66.48% and on the effectiveness of the third channel pipe of 3 = 60.59% it is obtained in the with to 7 with a discharge of 0.000041 m3/s.

In this investigation of multi heat pipe induced in heat exchanger shows the developments in heat transfer is to improve the efficiency of heat exchangers. Water is used as a heat transfer fluid and acetone is used as a working fluid. Rotameter is set to measure the flow rate of cold water and hot water. To maintain the parameter as experimental setup. Then set the mass flow rate of hot water as 40 LPH, 60LPH, 80 LPH, 100LPH, 120 LPH and mass flow rate of cold water as 20 LPH, 30 LPH, 40 LPH, 50 LPH, and 60 LPH. Then 40 C, 45 ºC, 50 ºC, 55 C, 60 ºC are the temperatures of hot water at inlet are maintained. To find some various physical parameters of Qc , hc , Re ,, Pr , Rth. The maximum effectiveness of the investigation obtained from condition of Thi 60 C, Tci 32 C and 100 LPH mhi, 60 LPH mci the maximum effectiveness attained as 57.25. Then the mhi as 100 LPH, mci as 60 LPH and Thi at 40 C as 37.6%. It shows the effectiveness get increased about 34.3 to the maximum conditions.


Author(s):  
Y. Elistratova ◽  
A. Seminenko ◽  
V. Minko ◽  
R. Ramazanov

The relevance of the work of information and diagnostic systems in the field of monitoring of plate heat exchange equipment is considered. The reliability of the monitoring devices requires an accurate mathematical description of the thermo hydrodynamic processes in the heat exchange channels. The classical description of these processes implies a uniform distribution of the flow rate of the working medium along the length of the plate package, which in turn implies equal conditions for the formation of salt deposition products on the heating surfaces of the plate heat exchanger. The use of dependencies that take into account the equality of costs for a package of plates reduces the reliability of diagnostics of the efficiency of hot water devices of the plate type. Since the geometric space formed by the plates is represented by parallel channels connected by sections of transit collectors, the method of resistance characteristics is proposed as a method of hydraulic calculation of the distribution features of liquid flows through heat exchange channels. The dependence of the design features of the location of the interplate channels relative to the input of the coolant into the distribution manifold is revealed. It is found that, the flow rate of the circulating coolant is less in the channels most remote from the inlet pipe than in the nearest channels. The hypothesis of the influence of the relative position of the channels in relation to the inlet pipe is confirmed by numerical studies of the hydrodynamic regime of the plate heat exchanger.


2018 ◽  
Vol 6 (3) ◽  
pp. 1-12
Author(s):  
Kamil Abdul Hussien

Abstract-The present work investigates the enhancement of heat transfer by using different number of circular fins (8, 10, 12, 16, and 20) in double tube counter flow heat exchanger experimentally. The fins are made of copper with dimensions 66 mm OD, 22 mm ID and 1 mm thickness. Each fin has three of 14 mm diameter perforations located at 120o from each to another. The fins are fixed on a straight smooth copper tube of 1 m length, 19.9 mm ID and 22.2 mm OD. The tube is inserted inside the insulated PVC tube of 100 mm ID. The cold water is pumped around the finned copper tube, inside the PVC, at mass flow rates range (0.01019 - 0.0219) kg/s. The Reynold's number of hot water ranges (640 - 1921). The experiment results are obtained using six double tube heat exchanger (1 smooth tube and the other 5 are finned one). The results, illustrated that the heat transfer coefficient proportionally with the number of fin. The results also showed that the enhancement ratio of heat transfer for finned tube is higher than for smooth tube with (9.2, 10.2, 11.1, 12.1 13.1) times for number of fins (8, 10, 12, 16 and 20) respectively.


Author(s):  
N. F. Timerbaev ◽  
A. K. Ali ◽  
Omar Abdulhadi Mustafa Almohamed ◽  
A. R. Koryakin

In this article, a mathematical simulation of a double pipe heat exchanger is carried out, having the longitudinal rectangular fins with the dimension of (2*3*1000) mm, mounted on the outer surface of the inner tube of the heat exchanger. In this paper, the advantage of using of that type of fins and its effect on the effectiveness of the heat exchanger are studied with the help of the computer program. The carried out research allowsmaking the calculation to find the optimum design parameters of heat exchangers. The outer tube diameter is (34.1mm) while the inner tube diameter is (16.05mm). The tubes wall thickness is (1.5mm) and the model length was (1 m). The hot water is flowing through the inner tube in parallel with the cold water that passing the outer tube. The hot and cold water temperature at the inlet is (75°C & 30°C) respectively. The mass flow rate inside the central pipe is (0.1 kg/s) while the annular pipe carrying (0.3 kg/s). In the present work, the program ANSYS Workbench 15.0 was used to find out the results of heat transfer as well as the behavior of liquids inside the heat exchangers.


2011 ◽  
Vol 374-377 ◽  
pp. 398-404 ◽  
Author(s):  
Ying Ning Hu ◽  
Ban Jun Peng ◽  
Shan Shan Hu ◽  
Jun Lin

A hot-water and air-conditioning (HWAC) combined ground sourse heat pump(GSHP) system with horizontal ground heat exchanger self-designed and actualized was presented in this paper. The heat transfer performance for the heat exchanger of two different pipe arrangements, three layers and four layers, respectively, was compared. It showed that the heat exchange quantity per pipe length for the pipe arrangement of three layers and four layers are 18.0 W/m and 15.0 W/m. The coefficient of performance (COP) of unit and system could remain 4.8 and 4.2 as GSHP system for heating water, and the COP of heating and cooling combination are up to 8.5 and 7.5, respectively. The power consumption of hot-water in a whole year is 9.0 kwh/t. The economy and feasibility analysis on vertical and horizontal ground heat exchanger were made, which showed that the investment cost per heat exchange quantity of horizontal ground heat exchanger is 51.4% lower than that of the vertical ground heat exchanger, but the occupied area of the former is 7 times larger than the latter's.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Amarjit Singh ◽  
Satbir S. Sehgal

In this study, the experimental analysis was performed on the shell-and-tube type heat exchanger containing segmental baffles at different orientations. In the current work, three angular orientations (θ) 0°, 30°, and 60° of the baffles were analyzed for laminar flow having the Reynolds number range 303–1516. It was observed that, with increase of Reynolds number from 303 to 1516, there was a 94.8% increase in Nusselt number and 282.9% increase in pressure drop. Due to increase of Reynolds number from 303 to 1516, there is a decrease in nondimensional temperature factor for cold water (ω) by 57.7% and hot water (ξ) by 57.1%, respectively.


2019 ◽  
Vol 3 (1) ◽  
pp. 27
Author(s):  
Mufid Mufid ◽  
Arif Rahman Hakim ◽  
Bambang Widiono

Saat ini kebutuhan akan energi di dunia terus meningkat, sejalan dengan semakin tumbuhnya industri untuk menopang kehidupan manusia. Namun kenaikan kebutuhan energi tersebut tidak diimbangi dengan bertambahnya sumber energi, sehingga harga energi semakin mahal. Untuk meminimalisir kebutuhan energi, maka perlu dicari sumber-sumber energi alternatif baru, terutama sumber energi baru dan terbarukan. Disamping itu perlu dilakukan pengelolaan energi yang lebih baik, sehingga kebutuhan energi dunia bisa dikurangi. Double Pipe Heat exchanger memiliki pipa luar stainless steel dengan diameter dalam (Do) 3,5 inchi, ketebalan pipa (To) 1,5 mm, dan panjang pipa (Lo)  790mm dan pipa dalam (Di) 1 3/8 inchi,   ketebalan(Ti) 0,6 mm, dan panjang pipa (Li) 920mm, dengan air dingin dan air panas yang digunakan sebagai fluida uji di annulus dan pipa dalam. Helical turbulator dari besi (mild steel) dengan dimensi geometris jarak antar elemen (pitch) sebesar 25mm, 50 mm dan 75 mm berdiameter dalam (Di) 5/16 inchi dan diameter luar(Do) 1 5/16 inchi dengan panjang 750mm dimasukkan dalam inner tube dari heat exchanger. Air panas memasuki tabung dengan variasi flowate mulai  400 l/jam sampai 900 l/jam, sedangkan flowrate air dingin konstan 900 l/jam. Hasil penelitian dengan  disisipkannya helical turbulator   sebagai turbulator pada heat exchanger mengakibatkan peningkatan laju perpindahan kalor. Helical turbulator dengan pitch 25mm menimbulkan peningkatan laju perpindahan kalor  paling besar sebesar ±62% dibandingkan plain tube. Helical turbulator mengakibatkan peningkatan NTU heat exchanger terbesar sebesar ±63% dihasilkan oleh helical turbulator dengan pitch 25mm.At present the need for energy in the world continues to increase, in line with the growing industry to sustain human life. However, the increase in energy needs is not offset by the increase in energy sources, so energy prices are increasingly expensive. To minimize energy needs, it is necessary to look for new alternative energy sources, especially new and renewable energy sources. Besides that, better energy management is needed, so that the world's energy needs can be reduced. Double Pipe Heat Exchanger has stainless steel outer pipe with inner diameter (Do) 3.5 inch, pipe thickness (To) 1.5 mm, and pipe length (Lo) 790 mm and pipe inside (Di) 1 3/8 inch, thickness (Ti) 0.6 mm, and the length of pipe (Li) 920 mm, with cold water and hot water used as test fluid in the annulus and inner pipe. Mild steel helical turbulators with geometric dimensions of 25mm, 50mm and 75mm intervals between 5/16 inch in diameter and a 750mm length 5/16 inch outer diameter (Do) are included in the inner tube of heat exchanger. Hot water enters the tube with variations in flowate from 400 l / hour to 900 l / hour, while the cold water flowrate is constant 900 l / hour. The results of the study by inserting a helical turbulator as a turbulator in a heat exchanger resulted in an increase in the heat transfer rate. Helical turbulators with a pitch of 25mm give rise to the highest heat transfer rate of ±62% compared to plain tubes. Helical turbulators cause the largest increase in NTU heat exchanger of ±63% produced by a helical turbulator with a 25mm pitch.


2020 ◽  
Vol 216 ◽  
pp. 01124
Author(s):  
Shavkat Agzamov ◽  
Sevinar Nematova

The article discusses the features of the creation and use of efficient heat exchanger. Designs of pipes with a developed heat exchange is presented. The procedure for determining the degree of development of the heat exchanging surface, the heat transfer coefficient, and the calculation of the heat transfer equation are given. As a result of creating efficient heat exchangers, three main parameters are used: the pipe outside diameter; the estimated flow rate; the Prandtl number.


2017 ◽  
Vol 5 (1) ◽  
pp. 1-15
Author(s):  
Zena K. Kadhim ◽  
Safaa Abed Mohammad

This study deals with experimental work implementing to recover the benefit by changing the shape of the tube in heat exchanger (HE) and improving the heat transfer using water as the working fluid. The experimental tests were carried out in build and design a complete test system for counter flow heat exchanger. The tested system consisting of a copper tube with (1m) length (17.05) mm inner diameter (19.05) mm outer diameter, fixed concentric within the outer tube was made of a material PVC. With an “inner diameter (ID) (43 mm) and outer diameter (OD) (50 mm)” isolated from the outside by using insulating material to reduce heat loss. The modify tube was manufacture containing transverse grooves with the depth equivalent to the half thickness of the copper tube. The distance between the grooves on the outer surface of the copper tube is take as a ratio between (0.5, 1) from the outer tube diameter. The laboratory experiment use the hot water at a flow rate ranging between (1-5) LPM, passes in the inner copper tube. As well as the cooling water with the mass flow rate ranging between (3-7) LPM. Three temperatures were the hot fluid are the adoption of (40, 50 and 60) oC and (25) oC the cold fluid. The experiment result showed that the improvement for temperature difference ranging from (14.94 % to 43.2 %) for both corrugated tubes with respect to smooth tube.


2021 ◽  
Vol 16 (3) ◽  
pp. 40-42
Author(s):  
Abiola Stephen Okunade ◽  
Tinuola Tokunbo Adebolu ◽  
Michael Tosin Bayode

In this study, the effects of different steeping methods on the microbial quality of ‘ogi’ produced from Sorghum bicolor (Linn.) grains were carried out. The sorghum grains were divided into four parts; the first part (Sample A) was steeped with cold water at 30+ 2oC for 72 h and washed with water before milling, the second part (Sample B) was steeped with cold water at 30+2oC for 72 h but was not washed before milling, the third part (Sample C) was steeped with hot water at 30+2oC for 24 h and washed before milling, while the fourth part (Sample D) was steeped with hot water at 30+2oC for 24 h and was not washed before milling. The processed raw ‘ogi’ samples were subjected to standard microbiological techniques to enumerate the microorganisms present. The highest bacterial count of 3.5 x 103cfu/ml was observed in sample B, the highest fungal count of 2.5 x 104 sfu/ml was observed in sample B, while sample C yields the lowest bacterial count of 8.0 x 102 cfu/ml and fungal count of 4.0 x102 sfu/ml. Good hygienic conditions during the processing of the ‘ogi’ must also be employed to reduce the chances of microbial contamination.


Sign in / Sign up

Export Citation Format

Share Document