scholarly journals Analysis Of The Effect Of Frequency Decrease On Performance On Five Phase Induction Motor

Author(s):  
Suranta Sitorus

Almost 70% of the energy produced by the generator is consumed by electric motors. The use of induction motors in industry and factories is more profitable than DC or synchronous motors, one of the advantages is easy maintenance and high efficiency. On machines in the industry speed regulation is absolutely necessary. Along with the development of power electronics, this has become very easy to do, namely by supplying a motor with a variable speed drive (VSD) inverter. With the supply of a variable speed drive inverter, it is possible to adjust the motor speed by adjusting the voltage frequency.This study was conducted to determine the effect of decreasing the frequency using a variable speed drive inverter on the performance of a five-phase induction motor. Tests are carried out at a frequency of 50 Hz (grid frequency), 35, 40, 45, 50 Hz (inverter frequency) and the motor is loaded at 0.5, 1, 1.5, 2, 2.5Nm. From the research, it was concluded that, among others, the use of a variable speed drive inverter resulted in greater motor losses and the motor produced a louder sound. At the same frequency (50 Hz) the efficiency of the motor is better when supplied directly from the grid.

Author(s):  
I Ketut Wiryajati ◽  
A.D Giriantari ◽  
Lie Jasa ◽  
I N. S. Kumara

Abstract— An induction motors  (IM) in many industries is used because it has several advantages, such as a very simple and strong construction, the price is relatively cheap, has good efficiency, power factor is quite good, and maintenance is easier. Besides the advantages of induction motors also have disadvantages, one disadvantage of induction motors is not being able to maintain a constant speed when there is a change in load. If the load changes, the speed of the induction motor will decrease. One method of regulating the speed of an induction motor presented in this study is the regulation of an induction motor using a carrier based PWM (CBPWM) inverter with the field oriented control  (FOC) technique. The estimation of rotor rotation, torque and flux is done by carrier- based PWM  technique which is given input voltage and stator current. To achieve the desired flux and torque, estimation is used as feedback in the control system. In this study, it will be simulated the induction motor speed regulation with a carrier base-based inverter using Matlab. The results obtained through simulation show the length of time to reach the reference speed for speeds of 1500 rpm and 1450 rpm is around 0.45 seconds. And THD  average 2,675%.


2013 ◽  
Vol 5 (2) ◽  
pp. 87-92
Author(s):  
Anton Anton ◽  
Tuti Angraini

The Induction motors are found in industrial and domestic environments because of low cost of operation including, induction motors are widely used induction motor 1 phase and 3 phase. During operation of induction motors generally used at normal speed, but the specific purpose induction motors operated with variable speed. In order to obtain varying motor speed can be controlled using the inverter. The use of inverters here to give supplay voltage AC induction motor in which the magnitude of the frequency can be varied. Setting frequency of the inverter utilizing method pulse with modulation (PWM). The circuit used to build PWM, using Insulated Gate Bipolar Transistor (IGBT) technology. Values ​​obtained variable frequency ranging from 4 Hz to 50 Hz, and acquired motor speed ranging from 12 rpm up to 1390 rpm.


2018 ◽  
Vol 218 ◽  
pp. 01004
Author(s):  
Muhamad Otong ◽  
Ceri Ahendyarti

The design variable speed drive induction motor is based on the power supply system of cascaded H-bridge seven level inverter. The variable speed regulation of the induction motor is performed by controlling the variable magnitude and output voltage frequency of the CHB circuit. The output voltage of the CHB circuit is generated by synthesizing the reference voltage signal derived from the field oriented control algorithm model of the induction motor. Testing and circuit operation mode using switching phase-switch technique on variable speed drive system of induction motor is done to know system performance in transient and steady-state by using computer software. The response of the simulation shows the conformity of the proposed concept. From this research is expected to improve the quality and capacity of output power in modular way so that it can be applied to the electric drive in general.


2010 ◽  
Vol 164 ◽  
pp. 1-4 ◽  
Author(s):  
V. Bleizgys ◽  
A. Baskys

This paper presents investigation results of the influence of the supply voltage amplitude variation law on the efficiency of AC induction motor in variable-speed drive based on the frequency converter. It is demonstrated that the commonly employed linear and square voltage amplitude variation laws do not provide the highest efficiency of the AC induction motor. The corrected AC voltage amplitude variation dependences for different motor load torque, at which high efficiency of the motor supplied by the frequency converter is maintained, are proposed and discussed. Reported experimental study was performed on a special test bench.


eLEKTRIKA ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 13
Author(s):  
Ulfatun Khasanah ◽  
Supari Supari ◽  
Sri Heranurweni

Induction motors are widely used in the industrial world because they have many advantages, including construction that is very simple and strong, cheap, has high efficiency, quite good power factor, and maintenance is easier. Besides the advantages of induction motors also have weaknesses, one of the disadvantages of an induction motor is not being able to maintain its speed constantly if there is a change in load. If there is a change in load, the speed of the induction motor will decrease. One method of regulating the speed of an induction motor developed in addition to vector control is the Direct Torque Control (DTC) method. The DTC control technique allows direct and separate flux and torque settings and can be done without using a speed sensor. The estimated rotor rotation, torque and flux is carried out by the DTC which is inputted with stator voltage and current. To achieve the desired flux and torque estimation is used as feedback on the control system. In this final assignment, the speed regulation of the induction motor will be simulated using the DTC method using Matlab. The results obtained through the simulation show the length of time to reach the reference speed for speeds of 500rpm and 1000 rpm is around 0.5 seconds. Keywords : Induction motor, Direct Torque Control, Matlab.


JURNAL TEKNIK ◽  
2018 ◽  
Vol 12 (2) ◽  
pp. 85-96
Author(s):  
Elham Prasetyo Wibowo ◽  
Elvira Zondra ◽  
Usaha Situmeang

                                                                                                                                      ABSTRAK              Exhaust fan adalah peralatan berupa sudu-sudu yang berputar dan memanfaatkan gaya sentrifugal untuk membuang exhaust gas hasil pembakaran bahan bakar solar engine diesel pada saat dilakukan tes pembebanan penuh. Dengan exhaust fan, gas karbondioksida yang dihasilkan oleh engine diesel memungkinkan untuk dibuang dengan cepat sehingga tidak memenuhi ruangan dan membahayakan bagi setiap karyawan. Pengoperasian exhaust fan dilakukan sesuai jadwal pengetesan engine. Exhaust fan tersebut digerakkan oleh motor induksi 3 phasa 30 kW dengan putaran nominal secara konstan. Pada saat pengetesan engine dengan nilai aliran gas buang yang rendah, exhaust fan tetap dioperasikan dengan kecepatan nominal. Operasional motor exhaust fan dengan kecepatan konstan seperti ini akan mengakibatkan konsumsi daya listrik yang relatif tinggi dari pada motor dengan kecepatan berubah-ubah sesuai kebutuhan. Sebagai pertimbangan hasil perhitungan untuk engine C 18 Caterpillar kapasitas 831 hp yang sebelumya  membutuhkan operasional exhaust fan dengan daya 24,7927 kW nilai sama untuk semua model engine, setelah penggunaan VSD dapat dikurangi sebesar 14,35 %  menjadi 21,2343 kW saja. Penelitian ini bertujuan mendapatkan probabilitas hubungan antara konsumsi energi listrik, frekuensi pada variable speed drive, putaran motor induksi dan nilai aliran udara pada cerobong exhaust fan. Nilai aliran udara exhaust fan tersebut akan disesuaikan dengan nilai aliran gas pembakaran yang dihasilkan oleh engine. Analisa optimasi motor exhaust fan ini sedianya akan menggunakan Matematic Analysis dan simulasi menggunakan simulink matlab sehingga diharapkan ada solusi untuk melakukan penghematan terhadap konsumsi daya motor, kemudian bisa diterapkan dalam semua pengoperasian motor yang ada di perusahaan.   Kata kunci : variable speed drive, motor induksi, exhaust fan                                                                                                                                            ABSTRACT              The exhaust fan is a rotary blade device which produces centrifugal force to remove exhaust gas from diesel fuel combustion during a full load test. With exhaust fans, the carbondioxide gases that generated by the diesel engine allows to be disposed quickly so that it does not fill the room and harm to every employee. The operation of  exhaust fan is carried out according to the engine test schedule. The exhaust fan is driven by a 3 phase induction motor of  30 kW with constant rotation. When testing the engine with a low Exhaust Gas flow value, the exhaust fan remains operated at rated speed. Operational exhaust fan with a constant speed like this will result in relatively high power consumption of the motor with the speed of change as needed. Considering the calculation results for C 18 engine Caterpillar capacity of 831 hp which previously required operational exhaust fan with 24,7927 kW of equal value for all engine models, after the use of VSD can be reduced by 14.35% to 21.2343 kW only. This study aims to obtain the probability of relationship between electrical energy consumption, frequency on the variable speed drive, induction motor rotation and the value of air flow in the exhaust fan chimney. The value of the exhaust fan air flow will be adjusted to the combustion gas flow value generated by the engine. The optimization analysis of this motor exhaust fan will be using Matematic Analysis and simulation using matlab simulink so it is expected there is a solution to make savings to motor power consumption, then it can be applied in all the motor operation in the company.   Keywords: variable speed drive, induction motor, exhaust fan


2019 ◽  
Vol 9 (24) ◽  
pp. 5295 ◽  
Author(s):  
Victor Goman ◽  
Safarbek Oshurbekov ◽  
Vadim Kazakbaev ◽  
Vladimir Prakht ◽  
Vladimir Dmitrievskii

The paper presents a comparative analysis of energy consumption by 2.2 kW electric motors of various types and energy efficiency classes in the electric drive of a pump unit with throttle control in a water supply system. Line-start permanent-magnet synchronous motors of the IE4 energy efficiency class and induction motors of the IE4 and IE3 energy efficiency classes of various manufacturers were considered (IE4 and IE3 are labels of energy efficiency classes of electric motors according to IEC 60034-30-1 standard). Energy consumption at a hydraulic load changing under a typical duty cycle was calculated based on the nameplate data of the pump and electric motors. The developed method shows that selecting an electric motor based on the IE energy efficiency class under the IEC 60034-30-1 standard (i.e., based on efficiency at a rated load) may not provide the minimum energy consumption of a variable flow pump unit over a typical duty cycle. In particular, the considered IE4 class line-start permanent-magnet synchronous motors do not provide significant advantages over IE4 class induction motors, and sometimes even over IE3 class induction motors when they are used in variable flow pump units.


Sign in / Sign up

Export Citation Format

Share Document