scholarly journals Remediation methods for the removal of pesticides in wastewater

Author(s):  
Andres Godinez-García ◽  
María Guadalupe Hernández-Morales ◽  
Santiago Guijosa-Guadarrama ◽  
Pedro Jesús Díaz-Tecanhuey

This work is part of one of the priorities of sustainable development that is the conservation of soil and the care of aquifers. Water is a vital liquid for human and all kind of living beings, the presence of pesticides in drinking water is a health problem that requires solution. In this paper, a review of the different methods used for the removal of pesticides in wastewater is made, such as biological remediation methods, using plants and microorganisms, remediation by physical methods by adsorption of contaminants with activated carbon, zeolites, polymers and clays and finally chemical remediation, through advanced oxidation with the production of hydroxyl radicals. A review of the most commonly used pesticides in the different agricultural areas is carried out, as well as their impact on the health of the inhabitants in these regions. Finally, a comparison of the advantages and disadvantages of these methods is made both for its effectiveness as well as for their cost.

2016 ◽  
Vol 2 (4) ◽  
pp. 565-579 ◽  
Author(s):  
C. K. Remucal ◽  
D. Manley

The photolysis of hypochlorous acid (HOCl) and hypochlorite (OCl−) produces a suite of reactive oxidants, including hydroxyl radicals (˙OH), chlorine radicals (Cl˙), and ozone (O3).


2004 ◽  
Vol 49 (4) ◽  
pp. 207-212 ◽  
Author(s):  
I. Tröster ◽  
L. Schäfer ◽  
M. Fryda ◽  
T. Matthée

The electrochemical advanced oxidation process (EAOP) using boron doped diamond (DiaChem®, registered trademark of Condias GmbH) has been studied for wastewater treatment and drinking water disinfection. DiaChem® electrodes consist of preferentially metallic base materials coated with a conductive polycrystalline diamond film by hot-filament chemical vapour deposition. They exhibit high overpotential for water electrolysis as well as high chemical inertness and extended lifetime. In particular the high overpotential for water decomposition opens the widest known electrochemical window, allowing the energy efficient production of hydroxyl radicals directly from aqueous solutions. The hydroxyl radicals on the other hand are effectively used for the oxidation of pollutants. The EAOP using DiaChem® electrodes thus facilitates the direct and, if necessary, complete decomposition of even hazardous or persistent pollutants in different wastewaters. Current efficiencies of more than 90%, also without the use of additives for hydroxyl radical generation, have been demonstrated. Additionally, for drinking water preparation diamond electrodes facilitate disinfection with and without the support of chlorine.


Entecho ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 1-5
Author(s):  
Tamara Pacholská ◽  
Pavla Šmejkalová

Intenzívne používanie pesticídnych látok spôsobilo na mnohých miestach vážne problémy v ekosystéme, najmä čo sa týka vodných zdrojov, kam sa tieto látky dostávajú. Keďže klasickou vodárenskou technológiou nie je možné pesticídy z vody odstraňovať, nachádzajú sa tak tieto látky v nadlimitných koncentráciách v pitných vodách. Preto je nutné navrhnúť technológiu, ktorá bude v ich odstraňovaní účinná. Ako vhodné sa ukazujú pokročilé oxidačné procesy (AOPs) v kombinácii s granulovaným aktívnym uhlím (GAU). Cieľom tohto experimentu bolo porovnať účinok ozonizácie a pokročilých oxidačných procesov, z ktorých sa overovala kombinácia ozónu s UV žiarením (O3 + UV) a ozónu s peroxidom vodíka (O3 + H2O2) s následnou sorpciou na GAU. Abstract (en) Intensive use of pesticides has caused serious problems in the ecosystem in many places, especially in terms of the water resources to which pesticides enter. It is not possible to remove pesticides from water using conventional water supply technology, so these substances are found in above-limit concentrations in drinking water. Therefore, it is necessary to design a technology that will be effective in removing them. Advanced oxidation processes (AOPs) in combination with granular activated carbon (GAU) prove to be suitable. The aim of this experiment was to compare the effect of ozonation and advanced oxidation processes, which verified the combination of ozone with UV radiation (O3 + UV) and ozone with hydrogen peroxide (O3 + H2O2) followed by sorption on GAU.


2019 ◽  
Author(s):  
Luke Skala ◽  
Anna Yang ◽  
Max Justin Klemes ◽  
Leilei Xiao ◽  
William Dichtel

<p>Executive summary: Porous resorcinarene-containing polymers are used to remove halomethane disinfection byproducts and 1,4-dioxane from water.<br></p><p><br></p><p>Disinfection byproducts such as trihalomethanes are some of the most common micropollutants found in drinking water. Trihalomethanes are formed upon chlorination of natural organic matter (NOM) found in many drinking water sources. Municipalities that produce drinking water from surface water sources struggle to remain below regulatory limits for CHCl<sub>3</sub> and other trihalomethanes (80 mg L<sup>–1</sup> in the United States). Inspired by molecular CHCl<sub>3</sub>⊂cavitand host-guest complexes, we designed a porous polymer comprised of resorcinarene receptors. These materials show higher affinity for halomethanes than a specialty activated carbon used for trihalomethane removal. The cavitand polymers show similar removal kinetics as activated carbon and have high capacity (49 mg g<sup>–1</sup> of CHCl<sub>3</sub>). Furthermore, these materials maintain their performance in real drinking water and can be thermally regenerated under mild conditions. Cavitand polymers also outperform activated carbon in their adsorption of 1,4-dioxane, which is difficult to remove and contaminates many public water sources. These materials show promise for removing toxic organic micropollutants and further demonstrate the value of using supramolecular chemistry to design novel absorbents for water purification.<br></p>


2004 ◽  
Vol 4 (5-6) ◽  
pp. 21-28
Author(s):  
S.-C. Kim ◽  
D.-K. Lee

TiO2-coated granular activated carbon was employed for the removal of toxic microcystin-LR from water. High surface area of the activated carbon provided sites for the adsorption of microcystin-LR, and the adsorbed microcystin-LR migrated continuously onto the surface of TiO2 particles which located mainly at the exterior surface in the vicinity of the entrances of the macropores of the activated carbon. The migrated microcystin-LR was finally degraded into nontoxic products and CO2 very quickly. These combined roles of the activated carbon and TiO2 showed a synergistic effect on the efficient degradation of toxic microcystin-LR. A continuous flow fluidized bed reactor with the TiO2-coated activated carbon could successfully be employed for the efficient photocatalytic of microcystin-LR.


1985 ◽  
Vol 17 (10) ◽  
pp. 97-103 ◽  
Author(s):  
P. Payment ◽  
M. Trudel

During the last decade, with the amelioration of the detection methods and the increasing number of studies on the subject, the isolation of viruses in treated drinking water has been reported more frequently than ever. These reports have in common the very low number of viruses isolated and these viruses are usually found only after concentration procedures involving several hundred liters of water. Our own studies have shown that during the conventional treatment of drinking water 99.998% of the indigenous viruses are removed. The residual viral fraction does not exceed 10 viruses per 1 000 liters of water. Using a probabilistic approach this viral concentration in drinking water is well below any dangerous level of enteric viruses in water and the presence of these viruses should not be considered as a health problem but more as the limit of the water treatment methodology.


Sign in / Sign up

Export Citation Format

Share Document