scholarly journals Effect of induction heating on Vickers and Knoop hardness of 1045 steel heat treated

Author(s):  
J. Merced MARTÍNEZ-VÁZQUEZ ◽  
Gabriel RODRÍGUEZ-ORTIZ ◽  
J. Gregorio HORTELANO-CAPETILLO ◽  
Arnulfo PÉREZ-PÉREZ

AISI 1045 steel is a steel of medium carbon, widely used in machinery, the automotive industry, and the food industry, among others. Therefore, to fulfill its purpose, it is necessary to improve its mechanical resistance, wear resistance and resistance to fatigue through different surface heat treatments. Variables such as heating time and hence speed affect the thickness of the hardened layer and the microstructural characteristics of the area affected by heat treatment. The inspection of the transformation of phases during the treatment and the thickness of the boundary layer is generated by determining the hardness of the material, whose procedure is subject to the ASTM E92-17 and E384-17standards, which establish the methodology to be followed. Therefore, the objective of this work is to quantify the effect of three heating times at 1123 K on the hardening of AISI 1045 steel and the regularity of the hardened layer to ensure its functionality as a component subjected to friction, in addition to developing a table of equivalences between the Knoop (HK), Vickers (HK) and Rockwell C (HRC) hardness scales.

2011 ◽  
Vol 33 (11) ◽  
pp. 1477-1489 ◽  
Author(s):  
R. Avilés ◽  
J. Albizuri ◽  
A. Lamikiz ◽  
E. Ukar ◽  
A. Avilés

2020 ◽  
Vol 8 (2) ◽  
pp. 89-95
Author(s):  
Yosyi Mustafa Rachman ◽  
Ahmad Maulana ◽  
Fatimah Dian Ekawati

AISI 1045 steel is a steel classified as medium carbon alloy steel which is widely used as the main material in machinery so it must have good mechanical properties such as hardness, wear resistance. The purpose of this study was to determine the effect of heat treatment on the wear rate of AISI 1045 steel. The research method used was AISI 1045 steel which was given a hardening heat treatment with a temperature variation of 800ºC, 850ºC, 900ºC with a holding time of 60 minutes, followed by rapid cooling using water . after that the specimen will be tested for wear by using a standard Pin On Disc. the results of the study show that the wear value at 800ºC has an average wear value of 15.0762 mg / cm², then at a temperature of 850ºC has an average wear value of 11.33933 mg / cm² and at a temperature of 900ºC has an average wear value of 9 9488 mg / cm². In conclusion, there was a very strong influence on the use of hardening temperature variations on the AISI 1045 steel wear and the smallest wear value on the specimen given by the hardening process at 900ºC with an average wear value of 9.9488 mg / cm².


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Frederico Ozanan Neves ◽  
Thiago Luis Lara Oliviera ◽  
Durval Uchoas Braga ◽  
Alex Sander Chaves da Silva

Residual stresses are those stresses that remain in a body when there is no external load applied. Numerous factors can induce residual stresses in the material, including cold forming. Thermal treatments of steel are widely used because they can improve the mechanical properties of the steel, such as toughness, tenacity, and resistance; however, thermal treatments can also produce residual stresses. This study aims to analyze the residual stresses present in a cold-forged part after heat treatments. Half-cylinder samples of AISI 1045 steel were cold-forged, and a wedge tool was pressed into their surface, causing a strain gradient. The samples were then heat-treated by annealing, normalizing, quenching, or quenching and tempering. A numerical simulation was also performed to aid in choosing the measurement points in the samples. The results show that residual stresses are dependent on the heat treatment and on the intensity and nature of previous residual stresses in the body.


1988 ◽  
Vol 3 (6) ◽  
pp. 1108-1118 ◽  
Author(s):  
M. Riabkina-Fishman ◽  
J. Zahavi ◽  
L. S. Zevin

The effect of the parameters of laser irradiation (beam power and travel velocity) as well as of various surface coatings and protecting atmospheres on the size, structure, and hardness of the laser-affected region was studied in the case of commercial 1045 steel and a continuous CO2 laser. The action of the laser beam depends more strongly on its traverse velocity than on its power. When the power density exceeds a certain threshold level, a drastic decrease in the size of the laser-affected region takes place. The action can be enhanced by surface treatment in orthophosphoric acid as well as by some painted surface coatings. Unlike the latter, electroplated Cr and Ni layers were found to cause substantial alloying of the laser-treated layer. The laser-affected region formed by a single pass consists of two distinct zones: a melt zone, surrounded by an austenitization zone with a duplex structure representing former pearlite and ferrite regions. The hardness of the melt zone (about HV 750) exceeds that of conventionally hardened 1045 steel; even higher values (up to HV 900) are observed in the former pearlite regions of the austeniti zation zone, that of the former ferrite regions being about HV 250. In the case of an extended surface processed by a series of equidistant passes, a relatively wide region of tempered martensite is formed (with minimum hardness values down to HV 400) due to the heating generated by each pass in the previously hardened layer. As a result, a periodic hardness distribution is observed, whose fcatures depend on the degree of overlapping. High tensile residual stresses were found by x-ray diffraction in surface layers both in the cases of overlapping and separated passes.


2011 ◽  
Vol 486 ◽  
pp. 262-265
Author(s):  
Amit Kohli ◽  
Mudit Sood ◽  
Anhad Singh Chawla

The objective of the present work is to simulate surface roughness in Computer Numerical Controlled (CNC) machine by Fuzzy Modeling of AISI 1045 Steel. To develop the fuzzy model; cutting depth, feed rate and speed are taken as input process parameters. The predicted results are compared with reliable set of experimental data for the validation of fuzzy model. Based upon reliable set of experimental data by Response Surface Methodology twenty fuzzy controlled rules using triangular membership function are constructed. By intelligent model based design and control of CNC process parameters, we can enhance the product quality, decrease the product cost and maintain the competitive position of steel.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eduardo da Rosa Vieira ◽  
Luciano Volcanoglo Biehl ◽  
Jorge Luis Braz Medeiros ◽  
Vagner Machado Costa ◽  
Rodrigo Jorge Macedo

AbstractQuench hardening aims at the microstructural transformation of steels in order to improve hardness and mechanical strength. The aim phase is, in most cases, the martensite. It is necessary to heat the material until it obtains its austenitization and quenching by immersion in a fluid. Currently, it is common to use watery polymeric solutions in this procedure. These fluids, which are the mixture of polymers in water, vary their thermal exchange capacity depending on the concentrations applied. The increase in concentration minimizes the removal of heat from the part, reducing the formation capacity of martensite, and developing a lower hardness and strong steel. In this work, microstructural characteristics and properties of AISI 1045 steel quenched in solutions based on polyvinylpyrrolidone (PVP) in 10, 15, 20, and 25% concentration were evaluated. The microstructural characterization quantified the percentage of the phases in each concentration, demonstrating a reduction of martensite as the concentrations were high. The investigation of the samples by x-ray diffraction confirmed the absence of austenite retained in the material. Furthermore, a microhardness scale between the core and the surface was constructed, in which a reduction gradient of the indices of this property towards the core of the sample was evidenced.


2018 ◽  
Vol 207 ◽  
pp. 02002
Author(s):  
Yaoke Wang ◽  
Meng Kou ◽  
Wei Ding ◽  
Huan Ma ◽  
Liangshan Xiong

When applying the non-parallel shear zone model to predict the cutting process parameters of carbon steel workpiece, it is found that there is a big error between the prediction results and the experimental values. And also, the former approach to obtain the relevant cutting parameters of the non-parallel shear zone model by applying coordinate transformation to the parallel shear zone model has a theoretical error – it erroneously regards the determinant (|J|) of the Jacobian matrix (J) in the coordinate transformation as a constant. The shape of the shear zone obtained when |J| is not constant is drew and it is found that the two boundaries of the shear zone are two slightly curved surfaces rather than two inclined planes. Also, the error between predicted values and experimental values of cutting force and cutting thrust is slightly smaller than that of constant |J|. A corrected model where |J| is a variable is proposed. Since the specific values of inclination of the shear zone (α, β), the thickness coefficient of the shear zone (as) and the constants related to the material (f0, p) are not given in the former work, a method to obtain the above-mentioned five constants by solving multivariable constrained optimization problem based on experimental data was also proposed; based on the obtained experimental data of AISI 1045 steel workpiece cutting force, cutting thrust, chip thickness, the results of five above-mentioned model constants are obtained. It is found that, compared with prediction from uncorrected model, the cutting force and cutting thrust of AISI 1045 steel predicted by the corrected model with the obtained constants has a better agreement with the experimental values obtained by Ivester.


Sign in / Sign up

Export Citation Format

Share Document