scholarly journals Optimización de la resistencia del cuero automotriz en operaciones de ensamble empleando un diseño experimental 3k

Author(s):  
Edgar Augusto Ruelas-Santoyo ◽  
Juan Antonio Sánchez-Márquez ◽  
Antonio Sánchez-Luna ◽  
Maria del Carmen Chacón-Olivares

Within the automotive industry one of the most used materials for user comfort is animal skin, this material is used to coat pieces that will have contact with the consumer. One of the most important problems that arise with the handling of the skin in operations of coating and assembly within plants of the automotive sector is the lack of resistance. A treatment that must be applied to the skin to improve its conditions of resistance to mechanical tension, is in function of two factors: percentage of moisture in the skin and amount of surfactant applied. In the present investigation, optimal operating conditions are established for the handling of the skin used in processes of the automotive sector based on a 3k factorial experimental design. The application case was carried out in a company dedicated to manufacture armrests for high-end cars. The results of the investigation show an improvement of 97% in operations where the resistance of the skin is required to meet the quality standards established in the automotive industry.

Author(s):  
Ana Delia MARCIAL ◽  
Jazmín Edith VALLES

As a fundamental part to be able to comply with the requirements of the services demanded by the automotive branch, it seeks to investigate the process of washing antistatic uniforms, as a spearhead for the incorporation of essential services for the automotive industry. Undoubtedly, one of the essential needs of this industry is based on the use of properly designed and treated uniforms for proper operation in the application, mainly auto parts, which safeguards the quality standards of the processes and the finished product of the Companies that operate and manage state development. This article shows an analysis of the conditioning process, which prolongs the life of the garment. A random analysis of the life of the garments will be carried out using the latest equipment that measures the content of carbon fiber in the garments through conductivity. This is a main indicator to ensure the safety of uniforms in the paint booths of the automotive sector.


2017 ◽  
Vol 13 (13) ◽  
pp. 175
Author(s):  
Omar Villa Nevarez ◽  
Maria Guadalupe Lopez Molina ◽  
Juan Alfredo Lino Gamino

In Mexico, the Automotive Industry is one of the most important sectors, based on the amount of sales, as well as for the number of people employed. The level of competition facing firms to win OEM programs requires having a very strict control over the whole company’s operation. System Dynamics is presented as a very powerful methodology for modeling the current and future situation of a company and combined with the Balanced scorecard concept, both provide a deep insight into the dynamics of the company. Based on this case of study a new methodology is proposed which provides a deeper insight on how the system works in such a way that the development of the company’s strategy has greater impact. Through the simulation of 24 months into the future it is possible to understand the system´s behavior in terms of the interrelation of the most critical variables which were defined as the main KPI´s.


2018 ◽  
Vol 19 (11) ◽  
pp. 30-35
Author(s):  
Marta Wójcik

The automotive sector is one of the fastest growing sectors of economy. The increasing amount of cars both in Polish and world roads results in the immeasurable benefits associated with the goods and human transport. On the other hand, this phenomenon caused the contamination of the environment. During the fuel combustion in petrol or diesel engines, the harmful gases, for example CO2, NOx and SOx are emitted. Apart from the negative impact on the environment, the emission of the aforementioned gases results in the deterioration of human conditions, as well as, the development of civilization diseases. In order to minimalize the harmful influence of an automotive industry on the environment, new technologies which can reduce the consumption of fuel or limit the fumes emission are developed. The first part of paper presents new solutions in an automotive sector which influence on the decline of the negative impact of automobiles on the environment. Additionally, proposed solutions affect the development of a car industry, taking into consideration environmental aspects.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 249-256 ◽  
Author(s):  
Hong-Ying Hu ◽  
Mamie Nozawa ◽  
Koichi Fujie ◽  
Tsuyoshi Makabe ◽  
Kohei Urano

The population dynamics of microbes in the biological wastewater treatment processes such as a submerged biofilter was investigated to obtain basic information to determine the optimal operating conditions. The effects of coexistence of biodegradable substances such as glucose and peptone on the acclimation of microbes in the biofilm to hard chemicals such as acrylonitrile (AN), which is poorly biodegradable and a volatile substance, was investigated on the basis of the respiratory quinone profile. Kinetic study of the removal of AN in the course of acclimation of microbes was investigated using a laboratory-scale submerged biofilter as well. It was ascertained that the acclimation of the microbes to AN was accelerated by coexistence of biodegradable substances, and the microbial phase after acclimation differed from those with the coexistence of glucose and peptone. The quinone profiles in the acclimation showed that Brevibacterium sp. and Pseudomonas aeruginosa, of which the predominant quinone of the respiratory chain is menaquinone-8(H2) and ubiquinone-9, respectively, multiplied selectively in the acclimation course without and with the coexistence of glucose and peptone, respectively. It was also made clear that there were few kinds and number of protozoa and metazoa in the biofilter treating the wastewater containing AN.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 555
Author(s):  
Sangkyung Na ◽  
Sanghun Song ◽  
Seunghyuk Lee ◽  
Jehwan Lee ◽  
Hyun Kim ◽  
...  

In this study, evaporator optimization, via both experimental and simulation methods was conducted. To evaluate the evaporator performance, under the optimal system, the compressor operating time and the effects of oil on the refrigerator system were studied. If the temperature of the refrigerator chamber reaches the setting value, the compressor stops working and it leads to the temperature of the refrigerator chamber slowly increasing, due to the heat transfer to the ambient. When the refrigerator temperature is out of the setting range, the compressor works again, and the refrigerator repeats this process until the end of its life. These on/off period can be controlled through the compressor piston movement. To determine the optimal compressor operating conditions, experiments of monthly power consumption were conducted under various compressor working times and the lowest power consumption conditions was determined when the compressor worked continuously. Lubricating oil, the refrigerator system, using oil, also influenced the system performance. To evaluate the effect of oil, oil eliminated and oil systems were compared based on cooling capacity and power consumption. The cooling capacity of the oil eliminated system was 2.6% higher and the power consumption was 3.6% lower than that of the oil system. After determining the optimal operating conditions of the refrigerator system, visualization experiments and simulations were conducted to decide the optimal evaporator and the conventional evaporator size can be reduced by approximately 2.9%.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1546
Author(s):  
Árpád Imre-Lucaci ◽  
Melinda Fogarasi ◽  
Florica Imre-Lucaci ◽  
Szabolcs Fogarasi

This paper presents a novel approach for the recovery of lead from waste cathode-ray tube (CRT) glass by applying a combined chemical-electrochemical process which allows the simultaneous recovery of Pb from waste CRT glass and electrochemical regeneration of the leaching agent. The optimal operating conditions were identified based on the influence of leaching agent concentration, recirculation flow rate and current density on the main technical performance indicators. The experimental results demonstrate that the process is the most efficient at 0.6 M acetic acid concentration, flow rate of 45 mL/min and current density of 4 mA/cm2. The mass balance data corresponding to the recycling of 10 kg/h waste CRT glass in the identified optimal operating conditions was used for the environmental assessment of the process. The General Effect Indices (GEIs), obtained through the Biwer Heinzle method for the input and output streams of the process, indicate that the developed recovery process not only achieve a complete recovery of lead but it is eco-friendly as well.


2013 ◽  
Vol 11 (2) ◽  
Author(s):  
David Ouellette ◽  
Cynthia Ann Cruickshank ◽  
Edgar Matida

The performance of a new methanol fuel cell that utilizes a liquid formic acid electrolyte, named the formic acid electrolyte-direct methanol fuel cell (FAE-DMFC) is experimentally investigated. This fuel cell type has the capability of recycling/washing away methanol, without the need of methanol-electrolyte separation. Three fuel cell configurations were examined: a flowing electrolyte and two circulating electrolyte configurations. From these three configurations, the flowing electrolyte and the circulating electrolyte, with the electrolyte outlet routed to the anode inlet, provided the most stable power output, where minimal decay in performance and less than 3% and 5.6% variation in power output were observed in the respective configurations. The flowing electrolyte configuration also yielded the greatest power output by as much as 34%. Furthermore, for the flowing electrolyte configuration, several key operating conditions were experimentally tested to determine the optimal operating points. It was found that an inlet concentration of 2.2 M methanol and 6.5 M formic acid, as along with a cell temperature of 52.8 °C provided the best performance. Since this fuel cell has a low optimal operating temperature, this fuel cell has potential applications for handheld portable devices.


2013 ◽  
Vol 67 (10) ◽  
pp. 2141-2147 ◽  
Author(s):  
Patrick Atheba ◽  
Patrick Drogui ◽  
Brahima Seyhi ◽  
Didier Robert

The present work evaluates the potential of the photocatalysis (PC) process for the degradation of butylparaben (BPB). Relatively high treatment efficiency was achieved by comparison to photochemical process. Prior to photocatalytic degradation, adsorption (AD) of BPB occurred on the titanium dioxide (TiO2)-supported catalyst. AD was described by Langmuir isotherm (KL = 0.085 L g−1, qm = 4.77 mg g−1). The influence of angle of inclination of the reactor, pH, recirculation flow rate and initial concentration of BPB were investigated. The PC process applied under optimal operating conditions (recirculation flow rate of 0.15 L min−1, angle of inclination of 15°, pH = 7 and 5 mg L−1 of BPB) is able to oxidize 84.9–96.6% of BPB and to ensure around 38.7% of mineralization. The Langmuir–Hinshelwood kinetic model described well the photocatalytic oxidation of BPB (k = 7.02 mg L−1 h−1, K = 0.364 L mg−1).


Sign in / Sign up

Export Citation Format

Share Document