Photo-degradation of butyl parahydroxybenzoate by using TiO2-supported catalyst

2013 ◽  
Vol 67 (10) ◽  
pp. 2141-2147 ◽  
Author(s):  
Patrick Atheba ◽  
Patrick Drogui ◽  
Brahima Seyhi ◽  
Didier Robert

The present work evaluates the potential of the photocatalysis (PC) process for the degradation of butylparaben (BPB). Relatively high treatment efficiency was achieved by comparison to photochemical process. Prior to photocatalytic degradation, adsorption (AD) of BPB occurred on the titanium dioxide (TiO2)-supported catalyst. AD was described by Langmuir isotherm (KL = 0.085 L g−1, qm = 4.77 mg g−1). The influence of angle of inclination of the reactor, pH, recirculation flow rate and initial concentration of BPB were investigated. The PC process applied under optimal operating conditions (recirculation flow rate of 0.15 L min−1, angle of inclination of 15°, pH = 7 and 5 mg L−1 of BPB) is able to oxidize 84.9–96.6% of BPB and to ensure around 38.7% of mineralization. The Langmuir–Hinshelwood kinetic model described well the photocatalytic oxidation of BPB (k = 7.02 mg L−1 h−1, K = 0.364 L mg−1).

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1546
Author(s):  
Árpád Imre-Lucaci ◽  
Melinda Fogarasi ◽  
Florica Imre-Lucaci ◽  
Szabolcs Fogarasi

This paper presents a novel approach for the recovery of lead from waste cathode-ray tube (CRT) glass by applying a combined chemical-electrochemical process which allows the simultaneous recovery of Pb from waste CRT glass and electrochemical regeneration of the leaching agent. The optimal operating conditions were identified based on the influence of leaching agent concentration, recirculation flow rate and current density on the main technical performance indicators. The experimental results demonstrate that the process is the most efficient at 0.6 M acetic acid concentration, flow rate of 45 mL/min and current density of 4 mA/cm2. The mass balance data corresponding to the recycling of 10 kg/h waste CRT glass in the identified optimal operating conditions was used for the environmental assessment of the process. The General Effect Indices (GEIs), obtained through the Biwer Heinzle method for the input and output streams of the process, indicate that the developed recovery process not only achieve a complete recovery of lead but it is eco-friendly as well.


2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Chan Kong ◽  
Yong Sun ◽  
Hongxi Zhang ◽  
Yongjiang Shi

With changes in the outdoor air temperature, the heat consumption of buildings also changes. Timely adjustment of the heating systems to ensure optimal operating conditions is extremely significant to save energy. In this study, the operation conditions of a heating system were analyzed numerically, and the existence, uniqueness, and stability of the optimal operation conditions of the heating system were proved. An operation optimization model that could obtain the optimal operation conditions was also established, and the correctness of the model was verified experimentally. Experimental results showed that when the flow rate was 0.606 m3/h, the supply water temperature was 67.13°C, water return temperature was 65.90°C, and the pump consumed the least amount of electricity. The experimental results and model calculation results showed that the operating cost is lower when the system flow rate is low and the supply water temperature is high under the same heat dissipation and indoor temperature.


2020 ◽  
Vol 26 (3) ◽  
pp. 126-130
Author(s):  
Krasimir Kalev

AbstractA schematic diagram of a hydraulic drive system is provided to stabilize the speed of the working body by compensating for volumetric losses in the hydraulic motor. The diagram shows the inclusion of an originally developed self-adjusting choke whose flow rate in the inlet pressure change range tends to reverse - with increasing pressure the flow through it decreases. Dependent on the hydraulic characteristics of the hydraulic motor and the specific operating conditions.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 249-256 ◽  
Author(s):  
Hong-Ying Hu ◽  
Mamie Nozawa ◽  
Koichi Fujie ◽  
Tsuyoshi Makabe ◽  
Kohei Urano

The population dynamics of microbes in the biological wastewater treatment processes such as a submerged biofilter was investigated to obtain basic information to determine the optimal operating conditions. The effects of coexistence of biodegradable substances such as glucose and peptone on the acclimation of microbes in the biofilm to hard chemicals such as acrylonitrile (AN), which is poorly biodegradable and a volatile substance, was investigated on the basis of the respiratory quinone profile. Kinetic study of the removal of AN in the course of acclimation of microbes was investigated using a laboratory-scale submerged biofilter as well. It was ascertained that the acclimation of the microbes to AN was accelerated by coexistence of biodegradable substances, and the microbial phase after acclimation differed from those with the coexistence of glucose and peptone. The quinone profiles in the acclimation showed that Brevibacterium sp. and Pseudomonas aeruginosa, of which the predominant quinone of the respiratory chain is menaquinone-8(H2) and ubiquinone-9, respectively, multiplied selectively in the acclimation course without and with the coexistence of glucose and peptone, respectively. It was also made clear that there were few kinds and number of protozoa and metazoa in the biofilter treating the wastewater containing AN.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 555
Author(s):  
Sangkyung Na ◽  
Sanghun Song ◽  
Seunghyuk Lee ◽  
Jehwan Lee ◽  
Hyun Kim ◽  
...  

In this study, evaporator optimization, via both experimental and simulation methods was conducted. To evaluate the evaporator performance, under the optimal system, the compressor operating time and the effects of oil on the refrigerator system were studied. If the temperature of the refrigerator chamber reaches the setting value, the compressor stops working and it leads to the temperature of the refrigerator chamber slowly increasing, due to the heat transfer to the ambient. When the refrigerator temperature is out of the setting range, the compressor works again, and the refrigerator repeats this process until the end of its life. These on/off period can be controlled through the compressor piston movement. To determine the optimal compressor operating conditions, experiments of monthly power consumption were conducted under various compressor working times and the lowest power consumption conditions was determined when the compressor worked continuously. Lubricating oil, the refrigerator system, using oil, also influenced the system performance. To evaluate the effect of oil, oil eliminated and oil systems were compared based on cooling capacity and power consumption. The cooling capacity of the oil eliminated system was 2.6% higher and the power consumption was 3.6% lower than that of the oil system. After determining the optimal operating conditions of the refrigerator system, visualization experiments and simulations were conducted to decide the optimal evaporator and the conventional evaporator size can be reduced by approximately 2.9%.


2013 ◽  
Vol 11 (2) ◽  
Author(s):  
David Ouellette ◽  
Cynthia Ann Cruickshank ◽  
Edgar Matida

The performance of a new methanol fuel cell that utilizes a liquid formic acid electrolyte, named the formic acid electrolyte-direct methanol fuel cell (FAE-DMFC) is experimentally investigated. This fuel cell type has the capability of recycling/washing away methanol, without the need of methanol-electrolyte separation. Three fuel cell configurations were examined: a flowing electrolyte and two circulating electrolyte configurations. From these three configurations, the flowing electrolyte and the circulating electrolyte, with the electrolyte outlet routed to the anode inlet, provided the most stable power output, where minimal decay in performance and less than 3% and 5.6% variation in power output were observed in the respective configurations. The flowing electrolyte configuration also yielded the greatest power output by as much as 34%. Furthermore, for the flowing electrolyte configuration, several key operating conditions were experimentally tested to determine the optimal operating points. It was found that an inlet concentration of 2.2 M methanol and 6.5 M formic acid, as along with a cell temperature of 52.8 °C provided the best performance. Since this fuel cell has a low optimal operating temperature, this fuel cell has potential applications for handheld portable devices.


1993 ◽  
Vol 16 (2) ◽  
pp. 63-70 ◽  
Author(s):  
N.A. Hoenich ◽  
P.T. Smirthwaite ◽  
C. Woffindin ◽  
P. Lancaster ◽  
T.H. Frost ◽  
...  

Recirculation is an important factor in single needle dialysis and, if high, can compromise treatment efficiency. To provide information regarding recirculation characteristics of access devices used in single needle dialysis, we have developed a new technique to characterise recirculation and have used this to measure the recirculation of a Terumo 15G fistula needle and a VasCath SC2300 single lumen catheter. The experimentally obtained results agreed well with those established clinically (8.5 ± 2.4% and 18.4 ± 3.4%). The experimental results have also demonstrated a dependence on access type, pump speeds and fistula flow rate. A comparison of experimental data with theoretical predictions showed that the latter exceeded those measured with the largest contribution being due to the experimental fistula.


2011 ◽  
Vol 189-193 ◽  
pp. 2285-2288
Author(s):  
Wen Hua Jia ◽  
Chen Bo Yin ◽  
Guo Jin Jiang

Flow features, specially, flow rate, discharge coefficient and efflux angle under different operating conditions are numerically simulated, and the effects of shapes and the number of notches on them are analyzed. To simulate flow features, 3D models are developed as commercially available fluid flow models. Most construction machineries in different conditions require different actions. Thus, in order to be capable of different actions and exhibit good dynamic behavior, flow features should be achieved in designing an optimized proportional directional spool valve.


2005 ◽  
Vol 127 (5) ◽  
pp. 1029-1037 ◽  
Author(s):  
L. O. Schunk ◽  
G. F. Nellis ◽  
J. M. Pfotenhauer

Growing interest in larger scale pulse tubes has focused attention on optimizing their thermodynamic efficiency. For Stirling-type pulse tubes, the performance is governed by the phase difference between the pressure and mass flow, a characteristic that can be conveniently adjusted through the use of inertance tubes. In this paper we present a model in which the inertance tube is divided into a large number of increments; each increment is represented by a resistance, compliance, and inertance. This model can include local variations along the inertance tube and is capable of predicting pressure, mass flow rate, and the phase between these quantities at any location in the inertance tube as well as in the attached reservoir. The model is verified through careful comparison with those quantities that can be easily and reliably measured; these include the pressure variations along the length of the inertance tube and the mass flow rate into the reservoir. These experimental quantities are shown to be in good agreement with the model’s predictions over a wide range of operating conditions. Design charts are subsequently generated using the model and are presented for various operating conditions in order to facilitate the design of inertance tubes for pulse tube refrigerators. These design charts enable the pulse tube designer to select an inertance tube geometry that achieves a desired phase shift for a given level of acoustic power.


Sign in / Sign up

Export Citation Format

Share Document