scholarly journals Anthropgenic Transformation of Ecological Status and Pollutants’ Transport along the Kuban River Length

Author(s):  

Variability of the water environment component composition and ecosystems’ status along the Kuban River length have been considered on the basis of overview of the long-term regime hydro/chemical information. Importance of such researches was caused by occurring changes of the ecological status and deterioration of the river water environment quality in current conditions of anthropogenic impact. The ecosystems ecological status’ transformation at individual sites along the Kuban River as an effect of anthropogenic impact upon the basin aquatic ecosystems has been investigated. Calculation of chemical substances input volume along the watercourse length has been made and pollutants’ downstream transport has been considered.

Author(s):  
P.D. Lomakin ◽  
◽  
S.S. Zhugailo ◽  
B.N. Panov ◽  
A.I. Chepyzhenko ◽  
...  

Based on expeditionary data of Marine Hydrophysical Institute (MHI, Sevastopol) and Southern Research Institute of Marine Fisheries and Oceanography (YugNIRO, Kerch), the main objects of economic activity that have anthropogenic impact on the Kerch Strait waters and adjacent areas of the Sea of Azov and the Black Sea are identified. These are ports, cargo terminals, dump zones, raid transshipment points, etc. Results obtained by optical methods were compared with those of long-term standard hydrochemical complex observations of water pollution in the studied region.


Author(s):  
Valery А. Gruzdev ◽  
◽  
Georgy V. Mosolov ◽  
Ekaterina A. Sabayda ◽  
◽  
...  

In order to determine the possibility of using the method of mathematical modeling for making long-term forecasts of channel deformations of trunk line underwater crossing (TLUC) through water obstacles, a methodology for performing and analyzing the results of mathematical modeling of channel deformations in the TLUC zone across the Kuban River is considered. Within the framework of the work, the following tasks were solved: 1) the format and composition of the initial data necessary for mathematical modeling were determined; 2) the procedure for assigning the boundaries of the computational domain of the model was considered, the computational domain was broken down into the computational grid, the zoning of the computational domain was performed by the value of the roughness coefficient; 3) the analysis of the results of modeling the water flow was carried out without taking the bottom deformations into account, as well as modeling the bottom deformations, the specifics of the verification and calibration calculations were determined to build a reliable mathematical model; 4) considered the possibility of using the method of mathematical modeling to check the stability of the bottom in the area of TLUC in the presence of man-made dumping or protective structure. It has been established that modeling the flow hydraulics and structure of currents, making short-term forecasts of local high-altitude reshaping of the bottom, determining the tendencies of erosion and accumulation of sediments upstream and downstream of protective structures are applicable for predicting channel deformations in the zone of the TLUC. In all these cases, it is mandatory to have materials from engineering-hydro-meteorological and engineering-geological surveys in an amount sufficient to compile a reliable mathematical model.


2020 ◽  
Vol 17 (4) ◽  
pp. 73-80 ◽  
Author(s):  
Vera Snezhko ◽  
Dmitrii Benin ◽  
Artem Lukyanets ◽  
Larisa Kondratenko

Considering features of hydrological conditions for hydro-chemical system, this paper analyses the performance of the hydro-ecological status of the Kuban river basin.. The results of the study on water chemical composition depending on the distance from the source are presented. By comparing the results with the reference values of water quality, increased aluminium, zinc, and copper content was established. Respective dendrograms of hydro-ecological studies obtained according to performed analysis for the Kuban River and its tributaries are presented. The relevance of the findings received is p<0.0005 and the correlation coefficient corresponds to 0.935...1. The results of multivariate cluster analysis showed that the Kuban basin has an increased content of particular heavy metals such as aluminium, copper, and zinc.


2021 ◽  
Vol 10 (6) ◽  
pp. 423
Author(s):  
Zhengsong Lin ◽  
Lu Zhang ◽  
Su Tang ◽  
Yang Song ◽  
Xinyue Ye

Due to the recent excessive pursuit of rapid economic development in China, the cultural heritage resources have been gradually destroyed. This paper proposes cultural recovery and ecological remediation patterns, and adopts virtual reality (VR) technology to evaluate the visual aesthetic effect of the restored landscape. The results show that: (1) the average vegetation coverage increased, providing data support for remediation design evaluation; and (2) the fixation counts and average saccade counts of the subjects increased after the remediation design, indicating that the restored cultural landscape reduced visual fatigue and provided a better visual aesthetic experience. Furthermore, the comparative analysis of the quality of the water environment shows that the remediation design project improved the ecological environment quality of the relics area. The results of this study will contribute to rural revitalization in minority areas in southwest China.


2018 ◽  
Vol 76 (2) ◽  
pp. 402-409
Author(s):  
Irini Tsikopoulou ◽  
Chris J Smith ◽  
Nadia K Papadopoulou ◽  
Elena Eleftheriadou ◽  
Ioannis Karakassis

AbstractFisheries have global socioeconomic and ecological effects. Long-term ecological studies could be beneficial to ecosystem approach management and biodiversity conservation, however, they are rare. In this study, the impacts of bottom trawling on a traditional fishing ground in the Eastern Mediterranean were addressed and an improvement in diversity metrics and ecological quality status were detected and ascribed to the Greek economic crisis. After 18 years, there was a modest increase in species richness, total abundance, and ecological status in the unaffected zone and more pronounced improvement in the trawled zone pointing at a possible link to a decrease in fishing effort. This upturn emphasized the strong link between financial activities and ecology. The present study underlines the multiple and variable effects of economy not only on countries and citizens but also on the environment and ecosystem conservation and management.


2018 ◽  
Vol 29 (2) ◽  
Author(s):  
N. O. Roshchyna

In this article, the current and former distribution of higher aquatic vegetation has been analyzed for floodplain lakes, arenas lakes and third terraces lakes in the valleys of large and medium North-Steppe Dnieper rivers. The article is devoted to the current state analysis of the higher aquatic vegetation at North-Steppe Dnieper lakes, its dynamics over a long-term period, as well as the determination of the nature and extent of anthropogenic-climatic changes in vegetation. Anthropogenic influence is a major threat to the development and functioning of most aquatic ecosystems. Since the twentieth century, it has been intensified by trends to long-term climate changes, which are also largely result of human activity. Increasing temperature of the winter season does not contribute to snow accumulation. Reduction of snow accumulation (frequent thaws during the winter), regulation of river flow (formation of a reservoirs cascade and ponds) and accumulation of melt water in artificial reservoirs led to the smoothing of the peak of the spring flood. Thus, the factor that provided spring washing of floodplain lakes, limited their overgrowing by air-water vegetation and their waterlogging disappeared. The anthropogenic factors that influence negatively include: intensification of agriculture, plowing of coastal areas, unreasonable land reclamation, overgrazing, development of transport and engineering infrastructure, urbanization, recreation, and chemical pollution. The presented data was obtained on the basis of processing our own research materials of 2009–2018 and literary and archival materials analysis (the herbarium of the Dnipropetrovs’k National University and the archive of the Research Institute of Biology). Natural Northern Steppe Dnieper lakes are located mainly in river valleys, so the study area was conventionally divided into sections: the large river valley (Dnieper) and the middle rivers valleys (Samara and Orel). Three ecological groups of macrophytes were reviewed and compared: hydatofites (submerged species), pleistophytes (species with floating leaves) and helophytes (air-water species). The vegetation of Dnieper floodplain lakes practically did not change for all three formation groups. The number of immersed plants communities within the floodplains of medium-sized rivers has decreased by three. The pleistophytes and helophytes associations decreased to fragments of associations. The lakes vegetation within the sandy Dnieper terrace practically did not change for all three formation groups. The submerged lakes plants associations within the sandy medium-sized rivers terraces have been reduced by two. As part of the lakes vegetation on the Dnipro saline terraces, fragments of associations of the two species are considered extinct. A new association of southern adventive species Ruppia maritima L. has appeared within the limits of the middle rivers saline terrace. Changes in higher aquatic vegetation are characteristic of all types of lakes. Changes occur in the direction of crowding out higher aquatic vegetation communities by airborne plant communities. The consequence of the anthropogenic-climatic transformation of aquatic ecosystems is increased mineralization, siltation, and, as a result, intensive overgrowing of lakes by aboriginal and adventive species with a wide ecological amplitude (replacement of sensitive to environmental changes species).


2021 ◽  
Vol 20 (1) ◽  
pp. 001
Author(s):  
Aleksandar Milosavljević ◽  
Đurađ Milošević ◽  
Bratislav Predić

Aquatic insects and other benthic macroinvertebrates are mostly used as bioindicators of the ecological status of freshwaters. However, an expensive and time-consuming process of species identification represents one of the key obstacles for reliable biomonitoring of aquatic ecosystems. In this paper, we proposed a deep learning (DL) based method for species identification that we evaluated on several available public datasets (FIN-Benthic, STONEFLY9, and EPT29) along with our Chironomidae dataset (CHIRO10). The proposed method relies on three DL techniques used to improve robustness when training is done on a relatively small dataset: transfer learning, data augmentation, and feature dropout. We applied transfer learning by employing ResNet-50 deep convolutional neural network (CNN) pretrained on ImageNet 2012 dataset. The results show significant improvement compared to original contributions and confirms that there is a considerable gain when there are multiple images per specimen.


2021 ◽  
Vol 4 ◽  
Author(s):  
Valentin Vasselon ◽  
Éva Ács ◽  
Salomé Almeida ◽  
Karl Andree ◽  
Laure Apothéloz-Perret-Gentil ◽  
...  

During the past decade genetic approaches have been developed to monitor biodiversity in aquatic ecosystems. These enable access to taxonomic and genetic information from biological communities using DNA from environmental samples (e.g. water, biofilm, soil) and methods based on high-throughput sequencing technologies, such as DNA metabarcoding. Within the context of the Water Framework Directive (WFD), such approaches could be applied to assess Biological Quality Elements (BQE). These are used as indicators of the ecological status of aquatic ecosystems as part of national monitoring programs of the european network of 110,000 surface water monitoring sites with 79.5% rivers and 11% lake sites (Charles et al. 2020). A high-throughput method has the potential to increase our spatio-temporal monitoring capacity and to accelerate the transfer of information to water managers with the aim to increase protection of aquatic ecosystems. Good progress has been made with developing DNA metabarcoding approaches for benthic diatom assemblages. Technological innovation and protocol optimization have allowed robust taxonomic (species) and genetic (OTU, ESV) information to be obtained from which diatom quality indices can be calculated to infer ecological status to rivers and lakes. Diatom DNA metabarcoding has been successfully applied for biomonitoring at the scale of national river monitoring networks in several countries around the world and can now be considered technically ready for routine application (e.g. Apothéloz-Perret-Gentil et al. 2017, Bailet et al. 2019, Mortágua et al. 2019, Vasselon et al. 2019, Kelly et al. 2020, Pérez-Burillo et al. 2020, Pissaridou et al. 2021). However, protocols and methods used by each laboratory still vary between and within countries, limiting their operational transferability and the ability to compare results. Thus, routine use of DNA metabarcoding for diatom biomonitoring requires standardization of all steps of the metabarcoding procedure, from the sampling to the final ecological status assessment in order to define good practices and standards. Following previous initiatives which resulted in a CEN technical report for biofilm sampling and preservation (CEN 2018), a set of experiments was initiated during the DNAqua-Net WG2 diatom workshop (Cyprus, 2019) to focus on DNA extraction and PCR amplification steps in order to evaluate: i) the transferability and reproducibility of a protocol between different laboratories; ii) the variability introduced by different protocols currently applied by the scientific community. 19 participants from 14 countries performed DNA extraction and PCR amplification in parallel, using i) the same fixed protocol and ii) their own protocol. Experiments were performed by each participant on a set of standardized DNA and biofilm samples (river, lake, mock community). In order to specifically test the variability of DNA extraction and PCR amplification steps, all other steps of the metabarcoding process were fixed and the preparation of the Miseq sequencing was performed by only one laboratory. The variability within and between participants will be evaluated on DNA extracts quantity, taxonomic (genus, species) and genetic richness, community structure comparison and diatom quality index scores (IPS). We will also evaluate the variability introduced by different DNA extraction and PCR amplification protocols on diatom quality index scores and the final ecological status assessment. The results from this collaborative work will not serve to define “one protocol to rule them all”, but will provide valuable information to define guidelines and minimum requirements that should be considered when performing diatom metabarcoding for biomonitoring.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2341
Author(s):  
Soon-Ju Yu ◽  
Ju-Yeon Son ◽  
Ho-Yeong Kang ◽  
Yong-Chul Cho ◽  
Jong-Kwon Im

Long-term changes in air and water temperatures and the resulted stratification phenomena were observed for Soyang Lake (SY), Paldang Lake (PD), Chungju Lake (CJ), and Daecheong Lake (DC) in South Korea. Non-parametric seasonal Kendall and Mann-Kendall tests, Sen slope estimator, and potential energy anomaly (PEA) were applied. The lake surface water temperatures (LSWTs) of SY and DC increased at the same rate (0.125 °C/y), followed by those of CJ (0.071 °C/y) and PD (0.06 °C/y). Seasonally, the LSWT increase rates for all lakes, except PD, were 2–3 times higher than the air temperature increase rates. The lake stratification intensity order was similar to those of the LSWT increases and correlations. SY and DC displayed significant correlations between LSWT (0.99) and PEA (0.91). Thus, the LSWT significantly affected stratification when the water temperature increased. PD demonstrated the lowest correlation between LSWT and PEA. Inflow, outflow, rainfall, wind speed, and retention time were significantly correlated, which varied within and between lakes depending on lake topographical, hydraulic, and hydrological factors. Thus, hydraulic problems and nutrients should be managed to minimize their effects on lake water quality and aquatic ecosystems because lake cyanobacteria can increase as localized water temperatures increase.


Sign in / Sign up

Export Citation Format

Share Document