scholarly journals Geospatial web application to support climate change research in Кazakhstan

Author(s):  
Dinara Abiyeva ◽  
Рoza Karagulova ◽  
Aiman Nysanbaeva ◽  
Nurlan Abayev ◽  
Gulzhamila Urazbayeva ◽  
...  

Climate change modelling data is represented by large datasets that require certain expertise and computational resources for its transformation and adjustment to user needs. Geospatial web applications and geoportals are considered as a solution to this problem in this article. Global web resources do not provide geoinformation services for research on climate change in Kazakhstan due to aggregation or low resolution of the source data coupled with limited functionality for interactive geo-visualization and data analysis. The article describes the web application “Kazakhstan Climate Change” developed by the authors, the purpose of which is aimed at supporting research on spatial-temporal patterns of climate change in Kazakhstan. The data derived from CMIP5 models served as the source data. Based on the initial indicators such as temperature and precipitation, using the developed Python scripts and R Climpact climate script packages, additional indicators such as evapotranspiration, drought indices, heat supply indices and indices of the length of the growing season were calculated in order to determine the impact of climate change on water resources and agriculture. The key advantages of the web application include time-series geo-visualization, interactive generation of diagrams and tables for analysis, in particular for selected units of water management zoning. The geospatial web application “Kazakhstan Climate Change” responds to the challenges of presenting large climate datasets in the easy-to-perceive style and in an easily comprehensible way for geospatial analysis. The functionality of the web application allows users, without GIS skills, to explore climate change scenarios on their own, this opportunity is of practical value for scientific and educational community, for policymakers in the field of climate change and water resources management.

2019 ◽  
Vol 11 (8) ◽  
pp. 2450 ◽  
Author(s):  
Noora Veijalainen ◽  
Lauri Ahopelto ◽  
Mika Marttunen ◽  
Jaakko Jääskeläinen ◽  
Ritva Britschgi ◽  
...  

Severe droughts cause substantial damage to different socio-economic sectors, and even Finland, which has abundant water resources, is not immune to their impacts. To assess the implications of a severe drought in Finland, we carried out a national scale drought impact analysis. Firstly, we simulated water levels and discharges during the severe drought of 1939–1942 (the reference drought) in present-day Finland with a hydrological model. Secondly, we estimated how climate change would alter droughts. Thirdly, we assessed the impact of drought on key water use sectors, with a focus on hydropower and water supply. The results indicate that the long-lasting reference drought caused the discharges to decrease at most by 80% compared to the average annual minimum discharges. The water levels generally fell to the lowest levels in the largest lakes in Central and South-Eastern Finland. Climate change scenarios project on average a small decrease in the lowest water levels during droughts. Severe drought would have a significant impact on water-related sectors, reducing water supply and hydropower production. In this way drought is a risk multiplier for the water–energy–food security nexus. We suggest that the resilience to droughts could be improved with region-specific drought management plans and by including droughts in existing regional preparedness exercises.


2019 ◽  
Vol 11 (24) ◽  
pp. 7083 ◽  
Author(s):  
Kristian Näschen ◽  
Bernd Diekkrüger ◽  
Mariele Evers ◽  
Britta Höllermann ◽  
Stefanie Steinbach ◽  
...  

Many parts of sub-Saharan Africa (SSA) are prone to land use and land cover change (LULCC). In many cases, natural systems are converted into agricultural land to feed the growing population. However, despite climate change being a major focus nowadays, the impacts of these conversions on water resources, which are essential for agricultural production, is still often neglected, jeopardizing the sustainability of the socio-ecological system. This study investigates historic land use/land cover (LULC) patterns as well as potential future LULCC and its effect on water quantities in a complex tropical catchment in Tanzania. It then compares the results using two climate change scenarios. The Land Change Modeler (LCM) is used to analyze and to project LULC patterns until 2030 and the Soil and Water Assessment Tool (SWAT) is utilized to simulate the water balance under various LULC conditions. Results show decreasing low flows by 6–8% for the LULC scenarios, whereas high flows increase by up to 84% for the combined LULC and climate change scenarios. The effect of climate change is stronger compared to the effect of LULCC, but also contains higher uncertainties. The effects of LULCC are more distinct, although crop specific effects show diverging effects on water balance components. This study develops a methodology for quantifying the impact of land use and climate change and therefore contributes to the sustainable management of the investigated catchment, as it shows the impact of environmental change on hydrological extremes (low flow and floods) and determines hot spots, which are critical for environmental development.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3547
Author(s):  
Rossana Escanilla-Minchel ◽  
Hernán Alcayaga ◽  
Marco Soto-Alvarez ◽  
Christophe Kinnard ◽  
Roberto Urrutia

Excluding Antarctica and Greenland, 3.8% of the world’s glacier area is concentrated in Chile. The country has been strongly affected by the mega drought, which affects the south-central area and has produced an increase in dependence on water resources from snow and glacier melting in dry periods. Recent climate change has led to an elevation of the zero-degree isotherm, a decrease in solid-state precipitation amounts and an accelerated loss of glacier and snow storage in the Chilean Andes. This situation calls for a better understanding of future water discharge in Andean headwater catchments in order to improve water resources management in glacier-fed populated areas. The present study uses hydrological modeling to characterize the hydrological processes occurring in a glacio-nival watershed of the central Andes and to examine the impact of different climate change scenarios on discharge. The study site is the upper sub-watershed of the Tinguiririca River (area: 141 km2), of which nearly 20% is covered by Universidad Glacier. The semi-distributed Snowmelt Runoff Model + Glacier (SRM+G) was forced with local meteorological data to simulate catchment runoff. The model was calibrated on even years and validated on odd years during the 2008–2014 period and found to correctly reproduce daily runoff. The model was then forced with downscaled ensemble projected precipitation and temperature series under the RCP 4.5 and RCP 8.5 scenarios, and the glacier adjusted using a volume-area scaling relationship. The results obtained for 2050 indicate a decrease in mean annual discharge (MAD) of 18.1% for the lowest emission scenario and 43.3% for the most pessimistic emission scenario, while for 2100 the MAD decreases by 31.4 and 54.2%, respectively, for each emission scenario. Results show that decreasing precipitation lead to reduced rainfall and snowmelt contributions to discharge. Glacier melt thus partly buffers the drying climate trend, but our results show that the peak water occurs near 2040, after which glacier depletion leads to reducing discharge, threatening the long-term water resource availability in this region.


2021 ◽  
Vol 13 (24) ◽  
pp. 14025
Author(s):  
Fazlullah Akhtar ◽  
Usman Khalid Awan ◽  
Christian Borgemeister ◽  
Bernhard Tischbein

The Kabul River Basin (KRB) in Afghanistan is densely inhabited and heterogenic. The basin’s water resources are limited, and climate change is anticipated to worsen this problem. Unfortunately, there is a scarcity of data to measure the impacts of climate change on the KRB’s current water resources. The objective of the current study is to introduce a methodology that couples remote sensing and the Soil and Water Assessment Tool (SWAT) for simulating the impact of climate change on the existing water resources of the KRB. Most of the biophysical parameters required for the SWAT model were derived from remote sensing-based algorithms. The SUFI-2 technique was used for calibrating and validating the SWAT model with streamflow data. The stream-gauge stations for monitoring the streamflow are not only sparse, but the streamflow data are also scarce and limited. Therefore, we selected only the stations that are properly being monitored. During the calibration period, the coefficient of determination (R2) and Nash–Sutcliffe Efficiency (NSE) were 0.75–0.86 and 0.62–0.81, respectively. During the validation period (2011–2013), the NSE and R2 values were 0.52–0.73 and 0.65–0.86, respectively. The validated SWAT model was then used to evaluate the potential impacts of climate change on streamflow. Regional Climate Model (RegCM4-4) was used to extract the data for the climate change scenarios (RCP 4.5 and 8.5) from the CORDEX domain. The results show that streamflow in most tributaries of the KRB would decrease by a maximum of 5% and 8.5% under the RCP 4.5 and 8.5 scenarios, respectively. However, streamflow for the Nawabad tributary would increase by 2.4% and 3.3% under the RCP 4.5 and 8.5 scenarios, respectively. To mitigate the impact of climate change on reduced/increased surface water availability, the SWAT model, when combined with remote sensing data, can be an effective tool to support the sustainable management and strategic planning of water resources. Furthermore, the methodological approach used in this study can be applied in any of the data-scarce regions around the world.


2021 ◽  
Vol 25 (2) ◽  
pp. 637-651
Author(s):  
Michel Le Page ◽  
Younes Fakir ◽  
Lionel Jarlan ◽  
Aaron Boone ◽  
Brahim Berjamy ◽  
...  

Abstract. In the context of major changes (climate, demography, economy, etc.), the southern Mediterranean area faces serious challenges with intrinsically low, irregular, and continuously decreasing water resources. In some regions, the proper growth both in terms of cropping density and surface area of irrigated areas is so significant that it needs to be included in future scenarios. A method for estimating the future evolution of irrigation water requirements is proposed and tested in the Tensift watershed, Morocco. Monthly synthetic crop coefficients (Kc) of the different irrigated areas were obtained from a time series of remote sensing observations. An empirical model using the synthetic Kc and rainfall was developed and fitted to the actual data for each of the different irrigated areas within the study area. The model consists of a system of equations that takes into account the monthly trend of Kc, the impact of yearly rainfall, and the saturation of Kc due to the presence of tree crops. The impact of precipitation change is included in the Kc estimate and the water budget. The anthropogenic impact is included in the equations for Kc. The impact of temperature change is only included in the reference evapotranspiration, with no impact on the Kc cycle. The model appears to be reliable with an average r2 of 0.69 for the observation period (2000–2016). However, different subsampling tests of the number of calibration years showed that the performance is degraded when the size of the training dataset is reduced. When subsampling the training dataset to one-third of the 16 available years, r2 was reduced to 0.45. This score has been interpreted as the level of reliability that could be expected for two time periods after the full training years (thus near to 2050). The model has been used to reinterpret a local water management plan and to incorporate two downscaled climate change scenarios (RCP4.5 and RCP8.5). The examination of irrigation water requirements until 2050 revealed that the difference between the two climate scenarios was very small (< 2 %), while the two agricultural scenarios were strongly contrasted both spatially and in terms of their impact on water resources. The approach is generic and can be refined by incorporating irrigation efficiencies.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3214
Author(s):  
María del Pilar Jiménez-Donaire ◽  
Juan Vicente Giráldez ◽  
Tom Vanwalleghem

Drought is an important natural hazard that is expected to increase in frequency and intensity as a consequence of climate change. This study aimed to evaluate the impact of future changes in the temperature and precipitation regime of Spain on agricultural droughts, using novel static and dynamic drought indices. Statistically downscaled climate change scenarios from the model HadGEM2-CC, under the scenario representative concentration pathway 8.5 (RCP8.5), were used at a total of 374 sites for the period 2006 to 2100. The evolution of static and dynamic drought stress indices over time show clearly how drought frequency, duration and intensity increase over time. Values of static and dynamic drought indices increase over time, with more frequent occurrences of maximum index values equal to 1, especially towards the end of the century (2071–2100). Spatially, the increase occurs over almost the entire area, except in the more humid northern Spain, and in areas that are already dry at present, which are located in southeast Spain and in the Ebro valley. This study confirms the potential of static and dynamic indices for monitoring and prediction of drought stress.


2016 ◽  
Vol 8 (1) ◽  
pp. 10-21
Author(s):  
Narayan P Gautam ◽  
Manohar Arora ◽  
N.K. Goel ◽  
A.R.S. Kumar

Climate change has been emerging as one of the challenges in the global environment. Information of predicted climatic changes in basin scale is highly useful to know the future climatic condition in the basin that ultimately becomes helpful to carry out planning and management of the water resources available in the basin. Climatic scenario is a plausible and often simplified representation of the future climate, based on an internally consistent set of climatological relationships that has been constructed for explicit use in investigating the potential consequences of anthropogenic climate change. This study based on statistical downscaling, provide good example focusing on predicting the rainfall and runoff patterns, using the coarse general circulation model (GCM) outputs. The outputs of the GCMs are utilized to study the impact of climate change on water resources. The present study has been taken up to identify the climate change scenarios for Satluj river basin, India.Journal of Hydrology and Meteorology, Vol. 8(1) p.10-21


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
L Velez Lapão

Abstract Background Climate change is modifying weather patterns, producing far-reaching effects on the environment, the economy and society as a whole, endangering global livelihoods, health, food and energy security, and water resources. Europe, and the Mediterranean will not escape the effects of climate change, which will aggravate risks and threats to human security (mainly public health) and regional stability. Actual cooperation and appropriate instruments are needed to address these threats. In this context, higher temperatures and extreme weather phenomena, such as severe droughts and heat waves will inevitably cause water scarcity in these regions and significant health issues. The degradation of the environment will foreseeably create security and health crisis scenarios, arising from energy shortages, air quality, water stress and food supply problems. Methods A scenario analysis was designed to address the relation between security, healthcare, energy and climate change, which contains multiple dimensions. We did a review of the literature and use it to feed the scenario analysis development, to better describe a phenomenon that is complex, with many possible paths and outcomes. Results Among the possible scenarios, two were considered: one based on collaboration and the other, on conflict. Several dimensions were examined to address both cooperation instruments and the consequences of non-cooperation: Energy production (e.g., conventional versus renewable) and use; water resources and food security; the environment (air quality) and the impact on health; Population and migration flow. Conclusions Climate change is a serious threat. To achieve and implement cooperation, there must be multilateral collaboration between the EU and the other Mediterranean countries, including stronger investment flows from north to south, in conjunction with the promotion of both energy efficiency policies and better healthcare system in the south.


2019 ◽  
Vol 27 (1) ◽  
pp. 14-24 ◽  
Author(s):  
Naser Mohammadzadeh ◽  
Bahman Jabbarian Amiri ◽  
Leila Eslami Endergoli ◽  
Shirin Karimi

Abstract With the aim of assessing the impact of climate change on surface water resources, a conceptual rainfall-runoff model (the tank model) was coupled with LARS-WG as a weather generator model. The downscaled daily rainfall, temperature, and evaporation from LARS-WG under various IPCC climate change scenarios were used to simulate the runoff through the calibrated Tank model. A catchment (4648 ha) located in the southern basin of the Caspian Sea was chosen for this research study. The results showed that this model has a reasonable predictive capability in simulating minimum and maximum temperatures at a level of 99%, rainfall at a level of 93%, and radiation at a level of 97% under various scenarios in agreement with the observed data. Moreover, the results of the rainfall-runoff model indicated an increase in the flow rate of about 108% under the A1B scenario, 101% under the A2 scenario, and 93% under the B1 scenario over the 30-year time period of the discharge prediction.


Sign in / Sign up

Export Citation Format

Share Document