scholarly journals Pengaruh Faktor Geografi Terhadap Karakteristik Bambu Petung

2019 ◽  
Vol 3 (1) ◽  
pp. 25-32
Author(s):  
Andromeda Dwi Laksono ◽  
Diah Tri Agustiningtyas

In this study was about a comparison of geographic factors towards the characterization of petung bamboo in Indonesia and the Philippines. Bamboo is one of the plants that has advantages in the field of technical materials based on developments in composite materials and is found in various regions. In general, bamboo has lignin and cellulose, where the morphology and nature of both bamboos are not the same from different countries. Therefore,material testing was carried out on each Indonesian and Filipino petung bamboo using material characterization testing methods. The process of Differential Scanning Calorimetry (DSC) was carried out to measure calorimetry with the yield of melting point in Philippine petung bamboo at 341ºC which is lower than the melting point in Indonesian petung bamboo which is 354.34ºC. In this DSC test, quantitative and qualitative results were obtainedin the form of phase changes, melting, and transition temperatures that occurred. Then an Energy Dispersive Spectrometer (EDS) was analyzed and the carbon content of cellulose and lignin was higher in Indonesian petung bamboo, respectively 65.29 wt.% And 66.05 wt.%. The morphology of bamboo shows that the fibers and matrices present in Philippine petung bamboo are denser than those of Indonesian petung bamboo. The highest peak value based on X-Ray Diffraction (XRD) is found in Philippine petung bamboo at 2ș of 34.49 and cubic phase.

Author(s):  
D. Nagasamy Venkatesh ◽  
S. Karthick ◽  
M. Umesh ◽  
G. Vivek ◽  
R.M. Valliappan ◽  
...  

Roxythromycin/ β-cyclodextrin (Roxy/ β-CD) dispersions were prepared with a view to study the influence of β-CD on the solubility and dissolution rate of this poorly soluble drug. Phase-solubility profile indicated that the solubility of roxythromycin was significantly increased in the presence of β-cyclodextrin and was classified as AL-type, indicating the 1:1 stoichiometric inclusion complexes. Physical characterization of the prepared systems was carried out by differential scanning calorimetry (DSC), X-ray diffraction studies (XRD) and IR studies. Solid state characterization of the drug β-CD binary system using XRD, FTIR and DSC revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement of dissolution rate.


Minerals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 533 ◽  
Author(s):  
Xin Zhang ◽  
Guanghui Li ◽  
Jinxiang You ◽  
Jian Wang ◽  
Jun Luo ◽  
...  

Ludwigite ore is a typical low-grade boron ore accounting for 58.5% boron resource of China, which is mainly composed of magnetite, lizardite and szaibelyite. During soda-ash roasting of ludwigite ore, the presence of lizardite hinders the selective activation of boron. In this work, lizardite and szaibelyite were prepared and their soda-ash roasting behaviors were investigated using thermogravimetric-differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microscope and energy dispersive spectrometer (SEM-EDS) analyses, in order to shed light on the soda-ash activation of boron within ludwigite ore. Thermodynamics of Na2CO3-MgSiO3-Mg2SiO4-Mg2B2O5 via FactSage show that the formation of Na2MgSiO4 was preferential for the reaction between Na2CO3 and MgSiO3/Mg2SiO4. While, regarding the reaction between Na2CO3 and Mg2B2O5, the formation of NaBO2 was foremost. Raising temperature was beneficial for the soda-ash roasting of lizardite and szaibelyite. At a temperature lower than the melting of sodium carbonate (851 °C), the soda-ash roasting of szaibelyite was faster than that of lizardite. Moreover, the melting of sodium carbonate accelerated the reaction between lizardite with sodium carbonate.


Author(s):  
S. Louki ◽  
N. Touach ◽  
A. Benzaouak ◽  
V. M. Ortiz-Martínez ◽  
M. J. Salar-García ◽  
...  

This work investigates the photocatalytic activity of new ferroelectric material with formula (Li0.95Cu0.15)Ta0.76Nb0.19O3 (LT76) in a single chamber microbial fuel cell (MFC) and compares its performance with the similar photocatalyst (Li0.95Cu0.15)Ta0.57Nb0.38O3 (LT57). The photocatalysts LT76 and LT57 were synthesized by ceramic route under the same conditions, with the same starting materials. The ratio Ta/Nb was fixed at 4.0 and 1.5 for LT76 and LT57, respectively. These phases were characterized by different techniques including X-ray diffraction (XRD), transmission electronic microscopy (TEM), particle size distribution (PSD), differential scanning calorimetry (DSC), and ultraviolet (UV)–visible (Vis). The new photocatalyst LT76 presents specific surface area of 0.791 m2/g and Curie temperature of 1197 °C. The photocatalytic efficiency of this material is assessed in terms of wastewater treatment and electricity generation by power density and removal rate of chemical oxygen demand (COD) in the presence of a light source. The values of maximum power density and COD removal were 19.77 mW/m3 and 93%, respectively, for LT76.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5552
Author(s):  
Ryota Kudo ◽  
Masahiro Sonobe ◽  
Yoshiaki Chino ◽  
Yu Kitazawa ◽  
Mutsumi Kimura

The synthesis and characterization of two phthalocyanine (Pc) structural isomers, 1 and 2, in which four 2,6-di(hexyloxy)phenyl units were attached directly to the 1,8,15,22- or 1,4,15,18-positions of the Pc rings, are described. Both Pcs 1 and 2 exhibited low melting points, i.e., 120 and 130 °C respectively, due to the reduction in intermolecular π-π interaction among the Pc rings caused by the steric hindrance of 2,6-dihexyloxybenzene units. The thermal behaviors were investigated with temperature-controlled polarizing optical microscopy, differential scanning calorimetry, powder X-ray diffraction, and absorption spectral analyses. Pc 1, having C4h molecular symmetry, organized into a lamellar structure containing lateral assemblies of Pc rings. In contrast, the other Pc 2 revealed the formation of metastable crystalline phases, including disordered stacks of Pcs due to rapid cooling from a melted liquid.


2000 ◽  
Vol 15 (7) ◽  
pp. 1617-1621 ◽  
Author(s):  
Jan Schroers ◽  
Konrad Samwer ◽  
Frigyes Szuecs ◽  
William L. Johnson

The reaction of the bulk glass forming alloy Zr41Ti14Cu12Ni10Be23 (Vit 1) with W, Ta, Mo, AlN, Al2O3, Si, graphite, and amorphous carbon was investigated. Vit 1 samples were melted and subsequently solidified after different processing times on discs of the different materials. Sessile drop examinations of the macroscopic wetting of Vit 1 on the discs as a function of temperature were carried out in situ with a digital optical camera. The reactions at the interfaces between the Vit 1 sample and the different disc materials were investigated with an electron microprobe. The structure and thermal stability of the processed Vit 1 samples were examined by x-ray diffraction and differential scanning calorimetry. The results are discussed in terms of possible applications for composite materials.


2014 ◽  
Vol 670-671 ◽  
pp. 26-29
Author(s):  
Zhi Long Pan ◽  
Shi Liang Ao ◽  
Jian Ping Jia

Oxide free Tin nanoparticles were synthesized from a chemical reduction method. Their morphological and thermal characterizations were studied in this paper. The X-ray diffraction (XRD) study showed that no oxides of Tin nanoparticles were formed. The thermal characterization by differential scanning calorimetry (DSC) exhibited the size dependency of the melting points. The melting point was as low as 202.16°C.


2015 ◽  
Vol 819 ◽  
pp. 198-203
Author(s):  
Nur Farahin Abdul Hamid ◽  
Rozana Aina Maulat Osman ◽  
Mohd Sobri Idris ◽  
Tze Qing Tan

La-doped barium titanate (BaTiO3) was prepared using conventional solid state synthesis route. All peaks for sample x=0 are approaching the phase pure of BaTiO3 structure with tetragonal crystal structure (P4mm). Sintering of pressed powder are performed at 1300oC, 1400oC and 1450oC for overnight for pure BaTiO3 and 1350oC for 3 days for BaTiO3 doped lanthanum with intermittent grinding. Phase transition was studied by different x composition. The changes in the crystal structure of the composition x=0.1 and 0.2 were detected by using X-ray diffraction (XRD). The phase changes between tetragonal-cubic and cubic-tetragonal depending on the temperature. Rietveld Refinement analysis is carried out to determine the lattice parameter and unit cell for BaTiO3.


2011 ◽  
Vol 311-313 ◽  
pp. 1638-1641
Author(s):  
Jun Hua Wang ◽  
Xiang Biao Cheng ◽  
Gang Huang ◽  
Feng Chun Dong ◽  
Yong Tang Jia

PCL/PVP blend membrane was prepared by casting solution method. Scanning electron microscopy (SEM), diffraction scanning calorimetry (DSC), and X-ray diffraction (XRD) techniques were employed to characterize membrane structure and morphology. Moreover, the hydrophilicity, mechanical property and biodegradability of membranes were investigated. Due to introducing PVP, the crystallinity and mechanical property of PCL altered to some extent. The hydrophilicity of the blend membrane improved remarkably with increasing PVP content, which was expressed by the contact angle declining and the rate of water absorption increasing. Lipase accelerated the degradation rate of PCL/PVP membrane.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
L. Guerbous ◽  
A. Boukerika

Cerium trivalent (Ce3+) doped YAG nano-sized phosphors have been successfully synthesized by sol-gel method using different annealing temperatures. The samples have been characterized by X-ray diffraction (XRD), thermogravimetry (TG), differential scanning calorimetry (DSC) analysis, Fourier transform infrared (FTIR) spectroscopy, and steady photoluminescence (PL) spectroscopy. X-ray diffraction analysis indicates that the pure cubic phase YAG was formed and strongly depends on the cerium content and the annealing temperature. It was found that the grain size ranges from 30 to 58 nm depending on the calcination temperature. The YAG: Ce nanophosphors showed intense, green-yellow emission, corresponding to Ce3+5d1→2F5/2,2F7/2transitions and its photoluminescence excitation spectrum contains the two Ce3+4f1→5d1, 5d2bands. The crystal filed splitting energy levels positions 5d1and 5d2and the emission transitions blue shift with annealing temperatures have been discussed. It was found that the Ce3+4f1ground state position relative to valence band maximum of YAG host nanomaterial decreases with increasing the temperature.


2014 ◽  
Vol 660 ◽  
pp. 942-946
Author(s):  
Mohamad Firdaus Abdul Wahid ◽  
C.M. Mardziah ◽  
Koay Mei Hyie ◽  
N.R. Nik Roselina

Hydroxyapatite was prepared by using precipitation method. The substitution of zinc ions in hydroxyapatite structure was studied by several characterization techniques. Several concentration of zinc ions were substituted into hydroxyapatite. Characterization technique such as X-ray diffraction method was used to study the phase changes and the lattice parameters with the addition of zinc. Field emission scanning electron microscopy was used to examine the influence of zinc on the crystal size and the morphology of the as-synthesized powders. Based on X-ray diffraction result, the addition of zinc affects the lattice parameters and phase. The result showed that zinc ions were substituted in the structure. As zinc substitution increased, the lattice parameters a and c decreased. The crystal shape of hydroxyapatite without zinc ions was regular shapes while hydroxyapatite with zinc ions was irregular and also tends to agglomerates with single particle was calculated about 28 - 34 nm .


Sign in / Sign up

Export Citation Format

Share Document