scholarly journals Characteristics and Chemical Compounds Liquid Smoke of Mangrove Stem Bark Waste from Charcoal Industry

2021 ◽  
Vol 56 (3) ◽  
pp. 63-71
Author(s):  
Nora Idiawati ◽  
Gracelia Monica ◽  
Mega Sari Juane Sofiana ◽  
Ikha Safitri ◽  
Sepridawati Siregar

In Batu Ampar, the charcoal industry, West Kalimantan, used Rhizophora sp. mangrove to produce liquid acid with mangrove stem bark waste as a side product. Pyrolysis of liquid smoke of mangrove stem bark waste at a temperature of 4000C for 6 hours resulted in a yield of 33.97% with pH, specific gravity, and color were 2.8, 1.004, and brown, respectively. Analysis of GC-MS showed that liquid smoke without distillation has 16 chemical compounds where the main components were acetone (12.32%), acetic acid (11.62%), 2-furancarboxaldehyde (26.72%), 5-methyl furfural (13.87%) and phenol, 2-methoxy (13.31%). Furthermore, this liquid smoke is distilled at 1000C to produces residual liquid smoke and distillate liquid smoke. The residual liquid smoke resulted in a yield of 95.8% with characteristics of pH, specific gravity, and color were the lowest 2.73, 1.004, and dark brown, respectively. The liquid smoke residue contained 12 chemical compounds where the main components were butanal, 3-hydroxy- (17.46%), acetone (17.15%), acetic acid (32.27 %), and 2-furancarboxaldehyde (13.28%). Distillate liquid smoke resulted in a yield of 4.2% with pH, specific gravity, and color characteristics, which were 2.8, 1.001, and yellow, respectively. This liquid smoke contained nine chemical compounds, with the main components were ethyl ester (26.69%) and ethylene glycol (64.70%). Based on the GC-MS data, the liquid smoke from mangrove leather waste did not contain poly-aromatic hydrocarbon (PAH) or benzopyrene compounds.

2020 ◽  
Vol 2 (2) ◽  
pp. 61-64
Author(s):  
Karelius Karelius ◽  
Lilis Rosmainar ◽  
Angeline Novia Toemon ◽  
Made Dirgantara

The liquid smoke produced from the torrefaction process of oil palm shells has the potential to be used as an antiseptic base for hand sanitizer and disinfectant products. It is due to its high phenol and acetic acid content. Apart from phenol and acetic acid, there are many other compounds that must be separated in the hope of obtaining liquid smoke with the main components of acetic acid and phenol, which function as antibacterial agents. This research begins with the production of liquid smoke through a torrefaction process. The liquid smoke obtained is distilled at 150 oC and followed by adsorption with activated charcoal for the purification process. The pH value and acetic acid content in the purified liquid smoke were determined and analyzed using GC-MS to determine the chemical compounds. The pH value has decreased after the refining process by distillation, and activated charcoal is inversely proportional to the increase in acetic acid levels after purification. Based on GC-MS analysis results, it can be seen that the levels of acetic acid, phenol, propanoic acid, and 2-propanone increased after distillation. The loss of 1,2-Benzenediol and 2-Furancarboxaldechde compounds shows that distillation of liquid smoke at 150oC is effective for separating the heavy fraction of liquid smoke. Furthermore, the distilled liquid smoke is filtered using activated charcoal. The GC-MS analysis results showed that the filtration results with activated charcoal could increase acetic acid and propanoic acid levels in liquid smoke.


2016 ◽  
Vol 9 (1) ◽  
pp. 64-72
Author(s):  
Fauziati Fauziati ◽  
Eldha Sampepana

Palm shell liquid smoke obtained by pyrolysis and redestilasi still produce a pungent smoke flavor and color of yellow to brownish yellow so that the necessary research purification of smoke that can be used as ingredients other than preservatives, such as antiseptic hand wash. The research objective is to reduce the stinging liquid smoke aroma, color is tawny and to identify the characterization of the active components of liquid smoke shell oil refining results in Gas Chromatography Mass Spectrometry (GC-MS). The purification process of liquid smoke with redistilled at a temperature of 2000C and by adding 4.5% zeolite adsorbent made three (3) times the resulting liquid smoke of distillate and residue. Liquid smoke produced from distillate and residue are added activated charcoal as much as 9%, 10.5% and 12%, then stirred with a shaker subsequently allowed to stand for 6 days and 10 days The results of the study showed that liquid smoke purification results of the residue by the addition of activated charcoal as 12% and the time saved for 10 days (A2B2C3) gives flavor and color by 1.94 of 1.84 is odorless, yellowish white color and clarity. While the characteristics of the active components of purification results are predominantly acetic acid and phenol compounds of residues that serve as preservatives, antibacterial and antioxidant compounds while PAH (Polycyclic Aromatic Hydrocarbon), namely tar, benzoperen, gualakol and siringoll (aroma causes) undetectedABSTRAKAsap cair cangkang sawit yang diperoleh melalui proses pirolisis dan redestilasi masih menghasilkan aroma asap menyengat dan warna kuning hingga kuning kecoklatan sehingga diperlukan penelitian pemurnian asap yang dapat digunakan sebagai bahan lain selain pengawet, seperti antiseptik pencuci tangan. Tujuan penelitian adalah  untuk mengurangi aroma asap cair yang menyengat, warna yang masih kuning kecoklatan dan untuk  mengidentifikasi karakterisasi komponen aktif asap cair cangkang sawit hasil pemurnian secara Kromatografi Gas Spektrometri Massa (GC-MS). Proses  pemurnian asap cair dengan  redistilasi pada suhu 2000C dan dengan menambahkan adsorben zeolit 4,5% yang dilakukan sebanyak 3 (tiga) kali  dihasilkan asap cair dari Destilat dan Residu . Asap cair  yang dihasilkan dari destilat dan residu ditambahkan arang aktif sebanyak 9%,10,5% dan 12%  kemudian diaduk dengan shaker selanjutnya didiamkan selama 6 hari dan 10 hari .Hasil penelitian menunjukkan bahwa asap cair hasil pemurnian dari residu dengan penambahan arang aktif sebanyak 12% dan waktu simpan selama 10 hari ( A2B2C3 ) memberikan aroma sebesar 1,94 dan warna sebesar 1,84 adalah tidak berbau ,  warna putih kekuningan dan jernih . Sedangkan  karakteristik  komponen aktif hasil pemurnian yang paling dominan  adalah  senyawa acetic acid dan phenol  dari residu yang berfungsi sebagai bahan pengawet, antibakteri dan antioksidan sedangkan senyawa PAH (Polycyclic Aromatic Hydrocarbon) yaitu tar, benzoperen,  gualakol  dan siringoll ( penyebab aroma ) tidak terdeteksi . Kata kunci : asap cair, cangkang sawit, komponen aktif, pemurnian, redestilasi 


2011 ◽  
Vol 480-481 ◽  
pp. 266-271
Author(s):  
Qi Mei Liu ◽  
Dang Quan Zhang ◽  
Kuan Peng ◽  
Wan Xi Peng

Cinnamomum camphora has been used to heal some specific diseases in the Chinese Folk for a long time. In order to explore the wide utilization in biomedicine and spicery, the chemical components of helium volatiles from the fresh branches of C. camphora were studied by TD-GC/MS. The analytical result by TD-GC/MS showed that 50 peaks were obtained from the helium volatiles from the fresh branches of C. camphora and 46 chemical compounds representing 99.993% of the total areas were identified. The results showed that the main components were as: Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl-, (1R)- (9.620%), 3-Cyclohexene-1- methanol, .alpha.,.alpha.4-trimethyl- (9.425%), 1,3-Benzodioxole, 5-(2-propenyl)- (8.223%), Bicyclo[2.2.1]heptane, 2-methyl-3-methylene-2-(4-methyl-3-pentenyl)-, (1S-exo)- (7.541%), Tricyclo[2.2.1.0(2,6)]heptane, 1,7-dimethyl-7-(4-methyl-3-pentenyl)-, (-)- (6.884%), Bicyclo[3.1.1] hept-2-ene, 2,6-dimethyl-6-(4-methyl-3-pentenyl)- (6.050%), Bicyclo[2.2.1]heptan-2-one, 1,7,7- trimethyl-, (1S)- (4.678%), 1,3-Benzodioxole, 5-(2-propenyl)- (4.500%), Naphthalene, 1,2,3,5,6,8a- hexahydro-4,7-dimethyl-1-(1-methylethyl)-, (1S-cis)- (4.491%), 3-Cyclohexen-1-ol, 4-methyl-1- (1-methylethyl)-, (R)- (4.254%), Copaene (4.120%), Tricyclo[2.2.1.0(2,6)]heptane, 1,7-dimethyl-7- (4-methyl-3-pentenyl)-, (-)- (4.097%), Acetic acid, 1,7,7-trimethyl-bicyclo[2.2.1]hept-2-yl ester (3.574%), Borneol 3.334%), 3-(4-N,N-Dimethylaminophenyl)propenoic acid, 2- (diethoxyphosphinyl)-, ethyl ester (2.809%), Eucalyptol (2.096%), 1,6,10-Dodecatriene, 7,11- dimethyl-3-methylene-, (Z)- (1.885%), (-)-Isosativene (1.664%), 1,6,10-Dodecatrien-3-ol, 3,7,11-trimethyl- (1.407%), Cyclohexene, 1-methyl-4-(5-methyl-1-methylene-4-hexenyl)-, (S)- (1.218%), 1,4-Methanoazulene, decahydro-4,8,8-trimethyl-9-methylene-, [1S-(1.alpha.,3a.beta., 4.alpha.,8a.beta.)]- (1.174%), .alpha.-Caryophyllene (1.156%), etc. The analytical result suggested that the helium volatiles from the fresh branches of C. camphora can be applicable to biomedicine and spicery industrial materials.


2015 ◽  
Vol 2 (2) ◽  
pp. 114-122
Author(s):  
Asmawit

Utilization of liquid smoke products from oil palm empty fruit bunches (fibers) is currently in West Kalimantan is not optimal, and only used as a substitute for rubber coagulant formic acid. Actually liquid smoke can be upgraded into a natural food preservative. This is due to liquid smoke has the ability to preserve foodstuffs because of the acidic compounds, phenolic and carbonyl, but the scale is very small. Research on processing of liquid smoke ever done is intended for rubber farmers as a coagulant and its scale is still very small. In this research, the processing of liquid smoke with redestilation way to get a product that further adds to the benefits of liquid smoke itself as a naturally preservative.Tahu a high protein foods perishable. To inhibit such damage is often added chemical preservatives that are harmful to human health. is one type of food product that does not hold up when stored without treatment / addition of preservatives. Usually know will only hold for 1-2 days. It required a preservative that can add shelf life to know that. Chemical preservatives are relatively expensive, so we need a natural preservative that does not significantly affect health. One of these is a natural preservative liquid smoke. Therefore, the objective of this study was to determine the composition of most of the content of liquid smoke such as acetic acid and phenol. The conclusion of this study is derived liquid smoke containing 6.38% acetic acid and phenol 1.125 mg / ml.


2011 ◽  
Vol 480-481 ◽  
pp. 466-471
Author(s):  
Qi Mei Liu ◽  
Wan Xi Peng

The analytical result by 80°С-based TD-GC/MS showed that 65 peaks were obtained from the helium volatiles from the fresh branches of Cinnamomum camphora and 60 chemical compounds were identified. The results showed that the main components were as: 1,3-Benzodioxole, 5-(2-propenyl)- (12.629%), Tricyclo[2.2.1.0(2,6)]heptane, 1,7-dimethyl-7-(4-methyl-3-pentenyl)-, (-)- (10.302%), 3-Cyclohexene-1-methanol, .alpha.,.alpha.4-trimethyl- (9.084%), Bicyclo[2.2.1] heptan-2-one, 1,7,7-trimethyl-, (1R)- (7.406%), Nerolidol (6.695%), Bicyclo[2.2.1]heptane, 2-methyl-3-methylene-2-(4-methyl-3-pentenyl)-, (1S-exo)- (6.017%), Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl-, (.+/-.)- (4.885%), Bicyclo[3.1.1]hept-2-ene, 2,6-dimethyl-6-(4-methyl-3-pentenyl)- (4.680%), Naphthalene, 1,2,3,5,6,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)-, (1S-cis)- (4.139%), 3-Cyclohexen-1-ol, 4-methyl-1-(1-methylethyl)-, (R)- (3.538%), Copaene (2.749%), Bicyclo[2.2.1] heptan-2-ol, 1,7,7-trimethyl-, (1S-endo)- (2.643%), Acetic acid, 1,7,7-trimethyl-bicyclo [2.2.1]hept-2-yl ester (2.536%), Cyclohexane, bromo- (2.530%), 1,6,10-Dodecatriene, 7,11- dimethyl-3-methylene-, (E)- (1.725%), Naphthalene, 1,2,3,4,4a,5,6,8a-octahydro-7-methyl-4- methylene-1-(1-methylethyl)-, (1.alpha.,4a.beta.,8a.alpha.)- (1.265%), Bicyclo[4.4.0]dec-1-ene, 2-isopropyl-5-methyl-9-methylene- (1.174%), (-)-Isosativene (1.149%), 11-Tetradecen-1-ol acetate (1.118%), .alpha.-Cadinol (1.061%), etc. The analytical result suggested that the helium volatiles from the fresh branches of C. camphora could be used as industrial materials of biomedicines, spicery and food industry.


Author(s):  
Jenan Mohammed Ubaid ◽  
Abeer Fauzi Al-Rubaye ◽  
Imad Hadi Hameed

Methanolic extract of bioactive compounds of Trogoderma granarium was assayed. GC-MS analysis of Trogoderma granarium revealed the existence of the Pentanoic acid , 1,1-dimethylpropyl ester , (1H)-Pyrimidinone , 5-chloro-4,6- diphenyl, Cyclobutanemethanol , α-methyl- , Nitro-2-methyl-1,3-propanediol , Hydroxylamine ,O-(2-methylpropyl)- , Uridine , 2',3'-O-(phenylmethylene)- ,Acetic acid ,2-benzoylthio-,2-oxo-2-phenylethyl ester , methylpropyl)- , Uridine , 2',3'-O-(phenylmethylene)- , 5'-(4-methylbenzenesulfo , Indolinol , 1-benzoyl-, Benzeneethanol , β-methyl-,(s)- , Acetic acid ,2-benzoylthio-,2-oxo-2-phenylethyl ester , Phenacyl thiocyanate , Deoxy-L-ribose-2,5-dibenzoate , Methenamine , Alanine , N-methyl-n-propargyloxycarbonyl-, decyl ester , Benzoyl chloride , Thiophene-2-ol , benzoate , Ethanone , -(5- nitrotetrazol-2-yl)-1-phenyl- , 2,5-Dimethylhexane-2,5-dihydroperoxide , Benzamide , N-(3-benzylthio-1,2,4-thiadiazol- 5-yl)- , Methyl p-(2-phenyl-1-benzimidazolyl)benzoate , Methyl-2-phenoxyethylamine , Pentaborane(11) , cis-Methoxy- 5-trans-methyl-1R-cyclohexanol , Nitro-1-phenyl-3-(tetrahydropyran-2-yloxy)propan-1-one , cis-Methoxy-5-transmethyl-1R-cyclohexanol. Trogoderma granarium produce many important secondary metabolites with high biological activities.


1979 ◽  
Vol 44 (8) ◽  
pp. 2330-2337 ◽  
Author(s):  
Jindřiška Maternová ◽  
Anastas A. Andreev ◽  
Dimitrii M. Shopov ◽  
Karel Setínek

It was found spectroscopically that cobalt(II) acetate dissolved in glacial acetic acid forms the octahedral complex [Co(OAc)2(HOAc)4] which in the presence of bromide ions gives the octahedral [Co(OAc)Br(HOAc)4] and tetrahedral bromo(acetate)cobalt(II) complexes with the higher number of Br- ions. When attached to an organic polymer cobalt(II) ions are bonded in the form of octahedral [Co(H2O)6]2+ cations which form with acetic acid similar complexes as in homogeneous phase and are able to coordinate one bromide ion. Drying the copolymer possessing octahedral hexaaquocobalt(II) cations leads to tetrahedral aquocomplexes which are solvated by gaseous acetic acid and converted into the acetate complexes with the liquid acid. The latter contain the acid in the inner coordination sphere and have tetrahedral symmetry.


2012 ◽  
Vol 23 (5) ◽  
pp. 539-546 ◽  
Author(s):  
Carlos Estrela ◽  
Manoel Damião Sousa-Neto ◽  
Orlando Aguirre Guedes ◽  
Ana Helena Gonçalves Alencar ◽  
Marco Antonio Hungaro Duarte ◽  
...  

Root perforation represents an undesirable complication that may lead to an unfavorable prognosis. The aims of this study were to characterize and to compare the presence of calcium oxide (CaO) on the chemical composition of materials used for root perforation therapy: gray and white mineral trioxide aggregate (MTA) and Portland cement (PC), gray MTA+5%CaO and gray MTA+10%CaO. The last two materials were analyzed to evaluate the increase of CaO in the final sample. CaO alone was used as a standard. Eighteen polyethylene tubes with an internal diameter of 3 mm and 3 mm in length were prepared, filled and then transferred to a chamber with 95% relative humidity and a temperature of 37ºC. The chemical compounds (particularly CaO) and the main components were analyzed by energy-dispersive X-ray microanalysis (EDX). EDX revealed the following concentrations of CaO: gray MTA: 59.28%, white MTA: 63.09%; PC: 72.51%; gray MTA+5%CaO: 63.48% and gray MTA+10%CaO: 67.55%. The tested materials presented different concentrations of CaO. Even with an increase of 5 and 10% CaO in gray MTA, the CaO levels found in the MTA samples were lower than those found in PC.


2011 ◽  
Vol 230-232 ◽  
pp. 852-856
Author(s):  
Qing Li ◽  
Dang Quan Zhang ◽  
Qi Mei Liu ◽  
Kuan Peng

The chemical components of helium volatiles from the fresh branches of Cinnamomum camphora were studied by TD-GC/MS. The analytical result by 60°С-based TD-GC/MS showed that 55 peaks were obtained from the helium volatiles from the fresh branches of Cinnamomum camphora and 53 chemical compounds were identified. The results showed that the main components were as: Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl-, (1R)- (15.4328%), 1,3-Benzodioxole, 5-(2-propenyl)- (14.881%), Tricyclo[2.2.1.0(2,6)]heptane, 1,7-dimethyl-7-(4-methyl-3-pentenyl)-, (-)- (12.694%), p-menth-1-en-8-ol (9.832%), Bicyclo[2.2.1]heptane, 2-methyl-3-methylene-2-(4-methyl-3- pentenyl)-, (1S-exo)- (6.143%), 1,6,10-Dodecatrien-3-ol, 3,7,11-trimethyl- (5.365%), Bicyclo[3.1.1] hept-2-ene, 2,6-dimethyl-6-(4-methyl-3-pentenyl)- (4.527%), Naphthalene, 1,2,3,5,6,8a- hexahydro-4,7-dimethyl-1-(1-methylethyl)-, (1S-cis)- (4.129%), 3-Cyclohexen-1-ol, 4-methyl-1- (1-methylethyl)- (2.965%), Borneol (2.627%), Bicyclo[2.2.1]heptan-2-ol, 1,7,7-trimethyl-, acetate, (1S-endo)- (2.586%), Copaene (2.534%), 1,6,10-Dodecatriene, 7,11-dimethyl-3-methylene-, (Z)- (1.612%), (-)-Isosativene (1.121%), etc. The analytical result suggested that the helium volatiles from the fresh branches of Cinnamomum camphora could be used as industrial materials of biomedicines and spicery.


Author(s):  
Kartini Hasballah ◽  
Murniana . ◽  
Erya . ◽  
Ardian .

<p><strong>Objective: </strong>The present study deals with the cytotoxic activity of n-hexane and ethyl acetate extracts of <em>Calotropis gigantea</em> L. stem bark and its fractions such as A, B, C, D and E fractions on murine leukemia cell line P388.</p><p><strong>Methods: </strong>The crude extracts of <em>C. gigantea</em> stem bark were prepared using n-hexane and ethyl acetate solvents. The plant extracts were subjected to vacuum liquid chromatography followed by TLC. According to the similarity of stain patterns, the fractions were combined. The extracts and its combined fractions were then subjected for the phytochemical test. Cytotoxic activity of those extracts and its combined fractions were tested using MTT assay. Fraction D was subjected to gravity column chromatography followed by TLC. Then, fractions A, B, and D2 were crystallized and subjected to GC-MS.</p><p><strong>Results: </strong>The qualitative screening of n-hexane extract of <em>Calotropis gigantea</em> L. stem bark for secondary metabolites showed the presence of terpenoid, flavonoids, phenolics and coumarins. While the ethyl acetate extract contained phenolics, steroids, flavonoids, saponins and coumarins compounds. IC<sub>50 </sub>values for n-hexane extract and E fraction are 76.29 µg/ml and 18.48 µg/ml, respectively. In the ethyl acetate extract and C fraction obtained IC<sub>50</sub> values 57.05 µg/ml and 52.58 µg/ml.</p><p><strong>Conclusion: </strong>Cytotoxic activity from E fraction of n-hexane extract of <em>C. gigantea</em> stem bark is the most potent and containing flavonoids, phenolics and coumarins. The main components from several compounds of n-hexane extract of <em>C. gigantea</em> are germacrane-A, (-)-globulol, urs-12-ene and veridiflorol. </p>


Sign in / Sign up

Export Citation Format

Share Document