scholarly journals Analysis of the impact of technologies and methods of hologram transmission on the parameters and effects of transmission

2019 ◽  
Vol 12 ◽  
pp. 220-225
Author(s):  
Krzysztof Mazur ◽  
Damian Mazur

The aim of the article is to compare and analyze the impact of technologies and data transfer techniques in term of displaying the image using a holographic pyramid. When assessing the usability of the solution, the following parameters will be taken into account: time of image transfer, use of physical parameters of the machine and parameters of the Java Virtual Machine.


2013 ◽  
Vol 10 (3) ◽  
pp. 1482-1488
Author(s):  
Ilhame El farissi ◽  
Mostafa AZIZI ◽  
Jean-Louis Lanet ◽  
Mimoun Moussaoui

The Java Card technology provides a secure environment for developing smart card application based on Java while also respecting some constraints such as the limited memory and processing card. In addition to the security and cryptography APIs offered by the Java Card technology, the smart card is protected against some threats. But, the fault attacks based on the variation of the physical parameters are able to disrupt its operation. In order to enhance the smart card security, we thought to add an intelligent component able to distinguish between the smooth functioning and the attack. This component is a Neural Network that we developed in C language and integrated in open source Virtual Machine (Avian) in order to simulate the attack effect and the network behavior. In this context, the detection rate of the attacks is 96% with no false positive.



Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 779
Author(s):  
Mohamed Gomah ◽  
Guichen Li ◽  
Salah Bader ◽  
Mohamed Elkarmoty ◽  
Mohamed Ismael

The awareness of the impact of high temperatures on rock properties is essential to the design of deep geotechnical applications. The purpose of this research is to assess the influence of heating and cooling treatments on the physical and mechanical properties of Egyptian granodiorite as a degrading factor. The samples were heated to various temperatures (200, 400, 600, and 800 °C) and then cooled at different rates, either slowly cooled in the oven and air or quickly cooled in water. The porosity, water absorption, P-wave velocity, tensile strength, failure mode, and associated microstructural alterations due to thermal effect have been studied. The study revealed that the granodiorite has a slight drop in tensile strength, up to 400 °C, for slow cooling routes and that most of the physical attributes are comparable to natural rock. Despite this, granodiorite thermal deterioration is substantially higher for quick cooling than for slow cooling. Between 400:600 °C is ‘the transitional stage’, where the physical and mechanical characteristics degraded exponentially for all cooling pathways. Independent of the cooling method, the granodiorite showed a ductile failure mode associated with reduced peak tensile strengths. Additionally, the microstructure altered from predominantly intergranular cracking to more trans-granular cracking at 600 °C. The integrity of the granodiorite structure was compromised at 800 °C, the physical parameters deteriorated, and the rock tensile strength was negligible. In this research, the temperatures of 400, 600, and 800 °C were remarked to be typical of three divergent phases of granodiorite mechanical and physical properties evolution. Furthermore, 400 °C could be considered as the threshold limit for Egyptian granodiorite physical and mechanical properties for typical thermal underground applications.



Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 675
Author(s):  
Hugo Savill Russell ◽  
Louise Bøge Frederickson ◽  
Ole Hertel ◽  
Thomas Ellermann ◽  
Steen Solvang Jensen

NOx is a pervasive pollutant in urban environments. This review assesses the current state of the art of photocatalytic oxidation materials, designed for the abatement of nitrogen oxides (NOx) in the urban environment, and typically, but not exclusively based on titanium dioxide (TiO2). Field trials with existing commercial materials, such as paints, asphalt and concrete, in a range of environments including street canyons, car parks, tunnels, highways and open streets, are considered in-depth. Lab studies containing the most recent developments in the photocatalytic materials are also summarised, as well as studies investigating the impact of physical parameters on their efficiency. It is concluded that this technology may be useful as a part of the measures used to lower urban air pollution levels, yielding ∼2% NOx removal in the immediate area around the surface, for optimised TiO2, in some cases, but is not capable of the reported high NOx removal efficiencies >20% in outdoor urban environments, and can in some cases lower air quality by releasing hazardous by-products. However, research into new material is ongoing. The reason for the mixed results in the studies reviewed, and massive range of removal efficiencies reported (from negligible and up to >80%) is mainly the large range of testing practices used. Before deployment in individual environments site-specific testing should be performed, and new standards for lab and field testing should be developed. The longevity of the materials and their potential for producing hazardous by-products should also be considered.



2021 ◽  
Vol 504 (2) ◽  
pp. 2325-2345
Author(s):  
Emanuel Sillero ◽  
Patricia B Tissera ◽  
Diego G Lambas ◽  
Stefano Bovino ◽  
Dominik R Schleicher ◽  
...  

ABSTRACT We present p-gadget3-k, an updated version of gadget-3, that incorporates the chemistry package krome. p-gadget3-k follows the hydrodynamical and chemical evolution of cosmic structures, incorporating the chemistry and cooling of H2 and metal cooling in non-equilibrium. We performed different runs of the same ICs to assess the impact of various physical parameters and prescriptions, namely gas metallicity, molecular hydrogen formation on dust, star formation recipes including or not H2 dependence, and the effects of numerical resolution. We find that the characteristics of the simulated systems, both globally and at kpc-scales, are in good agreement with several observable properties of molecular gas in star-forming galaxies. The surface density profiles of star formation rate (SFR) and H2 are found to vary with the clumping factor and resolution. In agreement with previous results, the chemical enrichment of the gas component is found to be a key ingredient to model the formation and distribution of H2 as a function of gas density and temperature. A star formation algorithm that takes into account the H2 fraction together with a treatment for the local stellar radiation field improves the agreement with observed H2 abundances over a wide range of gas densities and with the molecular Kennicutt–Schmidt law, implying a more realistic modelling of the star formation process.



2021 ◽  
Vol 109 (4) ◽  
pp. 261-281
Author(s):  
Yves Wittwer ◽  
Robert Eichler ◽  
Dominik Herrmann ◽  
Andreas Türler

Abstract The Fast On-line Reaction Apparatus (FORA) was used to investigate the influence of various reaction parameters onto the formation and transport of metal carbonyl complexes (MCCs) under single-atom chemistry conditions. FORA is based on a 252Cf-source producing short-lived Mo, Tc, Ru and Rh isotopes. Those are recoiling from the spontaneous fission source into a reaction chamber flushed with a gas-mixture containing CO. Upon contact with CO, fission products form volatile MCCs which are further transported by the gas stream to the detection setup, consisting of a charcoal trap mounted in front of a HPGe γ-detector. Depending on the reaction conditions, MCCs are formed and transported with different efficiencies. Using this setup, the impact of varying physical parameters like gas flow, gas pressure, kinetic energy of fission products upon entering the reaction chamber and temperature of the reaction chamber on the formation and transport yields of MCCs was investigated. Using a setup similar to FORA called Miss Piggy, various gas mixtures of CO with a selection of noble gases, as well as N2 and H2, were investigated with respect to their effect onto MCC formation and transport. Based on this measurements, optimized reaction conditions to maximize the synthesis and transport of MCCs are suggested. Explanations for the observed results supported by simulations are suggested as well.



Author(s):  
Pavel Goldman ◽  
Agnes Muszynska

Abstract This report presents experimental, analytical, and numerical results describing vibrational phenomena in a rotating machine with one loose pedestal. The loose-pedestal machine rotor vibrations represent unbalance-related excited vibrations of synchronous and fractional subsynchronous regimes. In this study the loose-pedestal machine is first simulated by a simple vibrating beam excited by a shaker mounted on it. The shaker simulates an unbalanced machine rotor. The beam occasionally enters in contact with the foundation. The excited vibrations are modified by impacting occurrences, and by periodic changes in system stiffness. A new model of the impact has been developed. The results of analytical and experimental studies stand in a good agreement. They illustrate the existence of the synchronous regime and several subsynchronous fractional regimes in various excitation frequency ranges. The analysis adequately predicts the occurrence of these regimes and determines the physical parameters affecting them. The analytical and experimental results are then compared with the responses of experimental rotor rig with one bearing pedestal looseness. They show the same qualitative pattern.



2020 ◽  
Vol 9 (4) ◽  
pp. 362-374
Author(s):  
J. C. Umavathi ◽  
Ali J. Chamkha

Nanotechnology has infiltrated into duct design in parallel with many other fields of mechanical, medical and energy engineering. Motivated by the excellent potential of nanofluids, a subset of materials engineered at the nanoscale, in the present work, a new mathematical model is developed for natural convection in a vertical duct containing nanofluid. Numerical scrutiny for the double-diffusive free and forced convection within a duct encumbered with nanofluid is performed. Buongiorno’s model is deployed to define the nanofluid. Robin boundary conditions are used to define the surface boundary conditions. Thermal and concentration equations envisage the viscous, Brownian motion, thermosphores of the nanofluid, Soret and Dufour effects. Using the Boussi-nesq approximation the solutal buoyancy effect as a result of gradients in concentration are incorporated. The conservation equations which are nonlinear are numerically estimated using fourth order Runge-Kutta methodology and analytically ratifying regular perturbation scheme. The mass, heat, nanoparticle concentration and species concentration fields on eight dimensionless physical parameters such as thermal and mass Grashof numbers, Brownian motion parameter, thermal parameter, Prandtl number, Eckert number, Schmidt parameter, and Soret parameter are calculated. The impact of these parameters are outlined pictorially. The velocity and temperature fields are boosted with the thermal Grashof number. The Soret and the Schemidt parameters reduces the nanoparticle volume fraction but it heightens the momentum, temperature and concentration. At the cold wall thermal and concentration Grashof numbers reduces the Nusselt values but they increase the Nusselt values at the hot wall. The reversal consequence was attained at the hot plate. The perturbation and Runge-Kutta solutions are equal in the nonappearance of Prandtl number. The (E. Zanchini, Int. J. Heat Mass Transfer 41, 3949 (1998)). results are restored for the regular fluid. The heat transfer rate is high for nanofluid when matched with regular fluid.





Sign in / Sign up

Export Citation Format

Share Document