scholarly journals The influence of physical parameters on the in-situ metal carbonyl complex formation studied with the Fast On-line Reaction Apparatus (FORA)

2021 ◽  
Vol 109 (4) ◽  
pp. 261-281
Author(s):  
Yves Wittwer ◽  
Robert Eichler ◽  
Dominik Herrmann ◽  
Andreas Türler

Abstract The Fast On-line Reaction Apparatus (FORA) was used to investigate the influence of various reaction parameters onto the formation and transport of metal carbonyl complexes (MCCs) under single-atom chemistry conditions. FORA is based on a 252Cf-source producing short-lived Mo, Tc, Ru and Rh isotopes. Those are recoiling from the spontaneous fission source into a reaction chamber flushed with a gas-mixture containing CO. Upon contact with CO, fission products form volatile MCCs which are further transported by the gas stream to the detection setup, consisting of a charcoal trap mounted in front of a HPGe γ-detector. Depending on the reaction conditions, MCCs are formed and transported with different efficiencies. Using this setup, the impact of varying physical parameters like gas flow, gas pressure, kinetic energy of fission products upon entering the reaction chamber and temperature of the reaction chamber on the formation and transport yields of MCCs was investigated. Using a setup similar to FORA called Miss Piggy, various gas mixtures of CO with a selection of noble gases, as well as N2 and H2, were investigated with respect to their effect onto MCC formation and transport. Based on this measurements, optimized reaction conditions to maximize the synthesis and transport of MCCs are suggested. Explanations for the observed results supported by simulations are suggested as well.

2021 ◽  
Vol 109 (4) ◽  
pp. 243-260 ◽  
Author(s):  
Yves Wittwer ◽  
Robert Eichler ◽  
Dominik Herrmann ◽  
Andreas Türler

Abstract A new setup named Fast On-line Reaction Apparatus (FORA) is presented which allows for the efficient investigation and optimization of metal carbonyl complex (MCC) formation reactions under various reaction conditions. The setup contains a 252Cf-source producing short-lived Mo, Tc, Ru and Rh isotopes at a rate of a few atoms per second by its 3% spontaneous fission decay branch. Those atoms are transformed within FORA in-situ into volatile metal carbonyl complexes (MCCs) by using CO-containing carrier gases. Here, the design, operation and performance of FORA is discussed, revealing it as a suitable setup for performing single-atom chemistry studies. The influence of various gas-additives, such as CO2, CH4, H2, Ar, O2, H2O and ambient air, on the formation and transport of MCCs was investigated. O2, H2O and air were found to harm the formation and transport of MCCs in FORA, with H2O being the most severe. An exception is Tc, for which about 130 ppmv of H2O caused an increased production and transport of volatile compounds. The other gas-additives were not influencing the formation and transport efficiency of MCCs. Using an older setup called Miss Piggy based on a similar working principle as FORA, it was additionally investigated if gas-additives are mostly affecting the formation or only the transport stability of MCCs. It was found that mostly formation is impacted, as MCCs appear to be much less sensitive to reacting with gas-additives in comparison to the bare Mo, Tc, Ru and Rh atoms.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yves Wittwer ◽  
Robert Eichler ◽  
Ronald Zingg ◽  
Dominik Herrmann ◽  
Andreas Türler

Abstract Using the Fast On-line Reaction Apparatus (FORA), the influence of various gas-purification columns onto the formation of metal carbonyl complexes (MCCs) under single-atom chemistry conditions was investigated. MCCs were synthesized from single atoms of Mo, Tc, Ru and Rh being produced by the spontaneous fission of 252Cf and recoiling into a CO-gas containing carrier gas atmosphere. The in-situ synthesized MCCs were volatile enough to be transported by the carrier gas to a charcoal trap where they were adsorbed and their subsequent decay was registered by γ-spectrometry. It was found that the type and combination of purification columns used to clean the applied CO-gas strongly influences the obtained formation and transport yields for all MCCs. With the exception of Rh-carbonyl, intense gas-purification strategies resulted in reduced formation and transport yields for MCCs in comparison with less efficient or even completely missing purification setups. It was postulated that the observed reduction in yield might depend on the content of Fe(CO)5 and Ni(CO)4, as well as potentially other MCCs, in the CO-gas, being formed by the interaction between CO and the steel-surfaces of FORA as well as from impurities in the used charcoal traps. Subsequently, it was shown that macro amounts of Fe(CO)5, Ni(CO)4, Mo(CO)6 and Re2(CO)10 added to the used process gas indeed increase significantly the overall yields for MCCs produced by 252Cf fission products. Ni(CO)4 appeared the most potent to increase the yield. Therefore, it was used in more detailed investigations. Using isothermal chromatography, it was shown that Ni(CO)4 does not affect the speciation of carbonyl species produced by the 252Cf fission product 104Mo. For 107Tc, 110Ru and 111Rh a speciation change cannot be excluded. For 111Rh a speciation change cannot be excluded. An inter-carbonyl transfer mechanism is suggested boosting the formation of MCCs. The current discovery might allow for new opportunities in various research fields, which are currently restricted by the low overall yields for MCCs produced under single-atom chemistry conditions. Examples are the chemical investigation of transactinides or the generation of radioactive ion beams from refractory metals at accelerators.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Michael Götz ◽  
Stefan Götz ◽  
Jens-Volker Kratz ◽  
Jochen Ballof ◽  
Christoph E. Düllmann ◽  
...  

Abstract The formation of carbonyl complexes using atom-at-a-time quantities of short-lived transition metals from fusion and fission reactions was reported in 2012. Numerous studies focussing on this chemical system, which is also applicable for the superheavy elements followed. We report on a novel two-chamber approach for the synthesis of such complexes that allows spatial decoupling of thermalization and gas-phase carbonyl complex synthesis. Neutron induced fission on 235U and spontaneous fission of 248Cm were employed for the production of the fission products. These were stopped inside a gas volume behind the target and flushed with an inert-gas flow into a second chamber. This was flushed with carbon monoxide to allow the gas-phase synthesis of carbonyl complexes. Parameter studies of the transfer from the first into the second chamber as well as on the carbonyl complex formation and transport processes have been performed. High overall efficiencies of more than 50% were reached rendering this approach interesting for studies of superheavy elements. Our results show that carbonyl complex formation of thermalized fission products is a single-atom reaction, and not a hot-atom reaction.


2018 ◽  
Author(s):  
Richard Kong ◽  
Mark Crimmin

<i>The formation of carbon chains by the coupling of COx (X = 1 or 2) units on transition metals is a fundamental step relevant to Fischer-Tropsch catalysis. Fischer-Tropsch catalysis produces energy dense liquid hydrocarbons from synthesis gas (CO and H2) and has been a mainstay of the energy economy since its discovery nearly a century ago. Despite detailed studies aimed at elucidating the steps of catalysis, experimental evidence for chain growth (Cn to Cn+1 ; n > 2) from the reaction of CO with metal complexes is unprecedented. In this paper, we show that carbon chains can be grown from sequential reactions of CO or CO2 with a transition metal carbonyl complex. By exploiting the cooperative effect of transition and main group metals, we document the first example of chain propagation from sequential coupling of CO units (C1 to C3 to C4), along with the first example of incorporation of CO2 into the growing carbon chain.</i><br>


2019 ◽  
Vol 85 (2) ◽  
pp. 17-22
Author(s):  
M. I. Khamdeev ◽  
E. A. Erin

Physical parameters of electric arc plasma as well as their time dependences are calculated when analyzing phosphate precipitates of the fission products of irradiated nuclear fuel. Phosphate concentrates of the fission products are known for their complex chemical composition and high thermal and chemical stability. Hence, direct atomic emission spectral analysis of phosphate powders without transferring them into solutions is advisable. Different conditions of sample preparation and synthesis of the reference materials determine the different chemical forms of the elements to be determined. This, in turn, affects the kinetics of their evaporation in the electrode crate and excitation processes in the plasma. The known mechanisms of those processes cannot always be transferred to specific conditions of the given method of analysis thus entailing the necessity of studying the effect of the samples chemical composition on the results of determination, proper choice of spectroscopic carriers, detailed study of spectra excitation processes in spectral analysis, and analysis of the physical parameters of the electric arc plasma. We used the lines Zn I 307.206 nm and Zn I 307.589 nm to measure the effective temperature of the central hot sections of the arc in a range of4500 - 6500 K. NaCl, BaCl2 and NaCl + T1C1 were studied to reduce the effect of the sample elemental composition on excitation conditions of the spectra and their stabilization as a spectroscopic carrier. In control experiments we used carrier-free samples. The coincidence of the values of the plasma physical parameters within the measurement error not exceeding 20%, as well as the identity of the nature of the kinetic curves for samples of phosphate precipitates and synthetic reference materials prove their correctness. The result of the study substantiate correctness of the direct atomic-emission spectral procedure in analysis of phosphate concentrates of fission when using synthetic reference materials.


2020 ◽  
Author(s):  
Piotr Długosz ◽  
Yana

The article presents the results of research on psychosocial condition among Polish and Ukrainian students during the quarantine. The aim of the research was to verify the impact of the pandemic and its accompanying phenomena on the well-being of youth. In order to achieve this goal, the CAWI on-line survey method with double measurement was used. The first measurement carried out at the beginning of the quarantine resulted in 3659 filled out surveys in Poland and 739 in Ukraine. The second measurement conducted at the end of distance learning brought 1978 filled out surveys in Poland and 411 in Ukraine. The results of research indicate that the quarantine had a negative impact on the psychosocial condition of youth. The deterioration of emotional condition and the increase in mental disorders has been observed. Due to the pandemic and distance learning, the mental health of youth deteriorated significantly. Polish youth were negatively influenced by the pandemic to a greater extent than young Ukrainians.


Author(s):  
Rodrigo Cueva ◽  
Guillem Rufian ◽  
Maria Gabriela Valdes

The use of Customer Relationship Managers to foster customers loyalty has become one of the most common business strategies in the past years.  However, CRM solutions do not fill the abundance of happily ever-after relationships that business needs, and each client’s perception is different in the buying process.  Therefore, the experience must be precise, in order to extend the loyalty period of a customer as much as possible. One of the economic sectors in which CRM’s have improved this experience is retailing, where the personalized attention to the customer is a key factor.  However, brick and mortar experiences are not enough to be aware in how environmental changes could affect the industry trends in the long term.  A base unified theoretical framework must be taken into consideration, in order to develop an adaptable model for constructing or implementing CRMs into companies. Thanks to this approximation, the information is complemented, and the outcome will increment the quality in any Marketing/Sales initiative. The goal of this article is to explore the different factors grouped by three main domains within the impact of service quality, from a consumer’s perspective, in both on-line and off-line retailing sector.  Secondly, we plan to go a step further and extract base guidelines about previous analysis for designing CRM’s solutions focused on the loyalty of the customers for a specific retailing sector and its product: Sports Running Shoes.


1989 ◽  
Vol 111 (3) ◽  
pp. 398-403 ◽  
Author(s):  
G. M. Cornetti ◽  
P. P. Messori ◽  
C. Operti

Main aspects concerning the development of a burner-assisted ceramic particulate trap for diesel engines equipping urban buses have been examined. First of all the basic phenomena causing particulate accumulation inside the filter and chemical and physical parameters controlling regeneration have been studied. Then systematic measurements were performed in different running conditions on an urban bus equipped with a ceramic filter using a diesel fuel burner to start regeneration in order to verify the theoretical approach. These tests showed that: (1) The amount of particulate collected by the trap is a function of the different flat and/or hilly circuits inside the city; (2) regeneration has to be started with a proper amount of particulate collected (too little does not allow complete regeneration, too much is dangerous for trap life). Therefore an on-line continuous monitoring system of the particulate collected has been developed. When a certain level is exceeded, the filter is bypassed and regeneration starts. The system is based on the direct measurement of the exhaust flow by means of a Venturi and the pressure loss on the trap. The amount of particulate is defined by real time comparison of Venturi differential pressure and filter pressure loss. Urban buses were purposely designed in order to be equipped with a ceramic particulate trap plus the control unit. Tests of the system have been successfully performed on the buses operated on flat and hilly circuits inside the city.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 779
Author(s):  
Mohamed Gomah ◽  
Guichen Li ◽  
Salah Bader ◽  
Mohamed Elkarmoty ◽  
Mohamed Ismael

The awareness of the impact of high temperatures on rock properties is essential to the design of deep geotechnical applications. The purpose of this research is to assess the influence of heating and cooling treatments on the physical and mechanical properties of Egyptian granodiorite as a degrading factor. The samples were heated to various temperatures (200, 400, 600, and 800 °C) and then cooled at different rates, either slowly cooled in the oven and air or quickly cooled in water. The porosity, water absorption, P-wave velocity, tensile strength, failure mode, and associated microstructural alterations due to thermal effect have been studied. The study revealed that the granodiorite has a slight drop in tensile strength, up to 400 °C, for slow cooling routes and that most of the physical attributes are comparable to natural rock. Despite this, granodiorite thermal deterioration is substantially higher for quick cooling than for slow cooling. Between 400:600 °C is ‘the transitional stage’, where the physical and mechanical characteristics degraded exponentially for all cooling pathways. Independent of the cooling method, the granodiorite showed a ductile failure mode associated with reduced peak tensile strengths. Additionally, the microstructure altered from predominantly intergranular cracking to more trans-granular cracking at 600 °C. The integrity of the granodiorite structure was compromised at 800 °C, the physical parameters deteriorated, and the rock tensile strength was negligible. In this research, the temperatures of 400, 600, and 800 °C were remarked to be typical of three divergent phases of granodiorite mechanical and physical properties evolution. Furthermore, 400 °C could be considered as the threshold limit for Egyptian granodiorite physical and mechanical properties for typical thermal underground applications.


Sign in / Sign up

Export Citation Format

Share Document