scholarly journals IDENTIFIKASI MOLEKULER BAKTERI DALAM FESES KUCING (Felis domestica) YANG DITUMBUHKAN PADA DE MANN ROGOSA SHARPE AGAR (MRSA)

PHARMACON ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 73
Author(s):  
Pingkan Stela Mende ◽  
Johanis Pelealu ◽  
Beivy Kolondam

ABSTRACTBacteria has many important role in the digestive tract of animals. Beneficial bacteria in the digestive tract are thought to be able to inhibit the growth of pathogenic bacteria, while pathogenic bacteria can cause diseases and infections. This research aimed to grow bacteria living in cat feces and to identify it with molecular method. This study used moleculer identification based on 16S rRNA gene as marker. There were three isolate if bacteria taken from the culture. Two isolates were identified as Enterococcus faecalis (with 99% and 100% in similarity compared with GenBank database). One isolate was identified as Kurthia gibsonii (100% in similarity). Keywords: Bacteria, cat feces, MRS Agar, gen 16s rRNA ABSTRAKBakteri memiliki peran penting dalam saluran pencernaan hewan. Bakteri yang menguntungkan dalam saluran pencernaan dianggap mampu menghambat pertumbuhan bakteri patogen, sedangkan bakteri yang merugikan dalam saluran pencernaan hewan dianggap mampu menyebabkan penyakit dan infeksi. Penelitian ini bertujuan untuk menumbuhkan bakteri-bakteri yang ada dalam feses kucing dan mengidentifikasikannya dengan metode molekuler. Penelitian ini menggunakan identifikasi molekuler berdasarkan gen 16S rRNA sebagai penanda. Hasil penelitian ini mendapatkan tiga isolat bakteri. Dua diantaranya teridentifikasi sebagai Enterococcus faecalis (kemiripan 99% dan 100% dengan yang ada di GenBank). Satu isolat teridentifikasi sebagai Kurthia gibsonii (kemiripan 100%).

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12097
Author(s):  
Yaowanoot Promnuan ◽  
Saran Promsai ◽  
Wasu Pathom-aree ◽  
Sujinan Meelai

This study aimed to investigate cultivable actinomycetes associated with rare honey bee species in Thailand and their antagonistic activity against plant pathogenic bacteria. Actinomycetes were selectively isolated from the black dwarf honey bee (Apis andreniformis). A total of 64 actinomycete isolates were obtained with Streptomyces as the predominant genus (84.4%) followed by Micromonospora (7.8%), Nonomuraea (4.7%) and Actinomadura (3.1%). All isolates were screened for antimicrobial activity against Xanthomonas campestris pv. campestris, Pectobacterium carotovorum and Pseudomonas syringae pv. sesame. Three isolates inhibited the growth of X. campestris pv. campestris during in vitro screening. The crude extracts of two isolates (ASC3-2 and ASC5-7P) had a minimum inhibitory concentration (MIC) of 128 mg L−1against X. campestris pv. campestris. For isolate ACZ2-27, its crude extract showed stronger inhibitory effect with a lower MIC value of 64 mg L−1 against X. campestris pv. campestris. These three active isolates were identified as members of the genus Streptomyces based on their 16S rRNA gene sequences. Phylogenetic analysis based on the maximum likelihood algorithm showed that isolate ACZ2-27, ASC3-2 and ASC5-7P were closely related to Streptomyces misionensis NBRC 13063T (99.71%), Streptomyces cacaoi subsp. cacaoi NBRC 12748T (100%) and Streptomyces puniceus NBRC 12811T (100%), respectively. In addition, representative isolates from non-Streptomyces groups were identified by 16S rRNA gene sequence analysis. High similarities were found with members of the genera Actinomadura, Micromonospora and Nonomuraea. Our study provides evidence of actinomycetes associated with the black dwarf honey bee including members of rare genera. Antimicrobial potential of these insect associated Streptomyces was also demonstrated especially the antibacterial activity against phytopathogenic bacteria.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Isamu Maeda ◽  
Mohammad Shohel Rana Siddiki ◽  
Tsutomu Nozawa-Takeda ◽  
Naoki Tsukahara ◽  
Yuri Tani ◽  
...  

Jungle Crows (Corvus macrorhynchos) prefer human habitats because of their versatility in feeding accompanied with human food consumption. Therefore, it is important from a public health viewpoint to characterize their intestinal microbiota. However, no studies have been involved in molecular characterization of the microbiota based on huge and reliable number of data acquisition. In this study, 16S rRNA gene-based microbial community analysis coupled with the next-generation DNA sequencing techniques was applied to the taxonomic classification of intestinal microbiome for three jungle crows. Clustering of the reads into 130 operational taxonomic units showed that at least 70% of analyzed sequences for each crow were highly homologous toEimeriasp., which belongs to the protozoan phylumApicomplexa. The microbiotas of three crows also contained potentially pathogenic bacteria with significant percentages, such as the generaCampylobacterandBrachyspira. Thus, the profiling of a large number of 16S rRNA gene sequences in crow intestinal microbiomes revealed the high-frequency existence or vestige of potentially pathogenic microorganisms.


2015 ◽  
Vol 2 (2) ◽  
pp. 86-98
Author(s):  
Dina Dyah Saputri ◽  
Maria Bintang ◽  
Fachriyan H Pasaribu

Endophytic bacteria are microorganisms that live in the internal tissues of plants and have symbiotic mutualism with their host plants. Endophytic bacteria may produce secondary metabolites that can be developed for medical, agricultural, and industrial purposes. Lantana camara is a medicinal plant that has therapeutic potential to treat a variety of diseases such as fever, tuberculosis, rheumatism, asthma, and skin disease. The purpose of this study was to isolate and characterize endophytic bacteria from Lantana camara which has potential to produce antibacterial compounds. The method of this research include isolation of endophytic bacteria of Lantana camara. Antibacterial activity assay was done against four types of pathogenic bacteria i.e. Bacillus cereus, Escherichia coli, Staphylococcus aureus, and Salmonella enteritidis. Characterization of endophytic bacteria was by 16S rRNA gene analysis and identification of antibacterial compounds by GC-MS analysis. Isolation of endophytic bacteria from Lantana camara resulted in BT22 as a potential isolate. Analysis of 16S rRNA gene showed that the BT22 isolate was similar to Bacillus amyloliquefaciens YB-1402 with 99% identity. The results of GC-MS analysis showed some antibacterial compounds such as: Cyclohexanone, 2-[2-(1,3-dithiolan-2-yl)propyl]-6-methyl-3-(1-methylethyl), Octadecane (CAS) n-Octadecane and Tetracosane (CAS) n-Tetracosane.


Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1267-1267 ◽  
Author(s):  
B. A. Martinez-Cisneros ◽  
G. Juarez-Lopez ◽  
N. Valencia-Torres ◽  
E. Duran-Peralta ◽  
M. Mezzalama

A bacterial disease of maize, bacterial stalk and top rot, was found in the state of Morelos in February 2011, and in the state of Puebla in July 2013, Mexico. In both cases, the incidence of diseased plants was lower than 0.5%. The typical symptoms were a soft rot and darkening of the tissues affecting the stalk and the top of the plant, causing breaking of the stalk. The lesions progressed from the top to below nodes, leaf sheaths and blades, and rotten tissues emitted an unpleasant odor. Eleven diseased plants were collected, and bacterial colonies were isolated from fragments detached from the edges of symptomatic tissues after sterilization with a 0.5% solution of NaClO for 30 s, rinsing three times in sterile water. The sterilized fragments were macerated in drops of distilled sterile water for 10 min and the extract was streaked on King's medium B (agar 15 g, distilled water 1,000 ml, proteose peptone 20 g, K2HPO4 1.5 g, MgSO4·7H2O 1.5 g, glycerol 10 ml). Eight representative strains from Morelos and five from Puebla were selected for identification. All strains were gram-negative, grew at 37°C, showed pectynolitic activity on potato tubers, were positive for indole production, utilized arabinose, galactose, glucose, glycerol, lactose, mannose, melibiose, rafinose, ribose, and sucrose but did not produce acid from arabitol, adonitol, and keto-methyl-glucoside (3,4). Pathogenicity tests were conducted with each strain by inoculating with a syringe four 25-day-old maize seedlings with 107 CFU ml–1 bacterial cells in the leaf collar. Plants were incubated in the greenhouse at 30°C during the day and 24°C during the night with a 12-h photoperiod, and relative humidity of 93%. The reference strains Erwinia chrysanthemi pv zeae ATTC29942 and Dickeya zeae CFBP 2052 were used as positive controls in laboratory and greenhouses tests. Sterile water was used as negative control. Two days after inoculation, soft stalk rot symptoms developed that were identical to those observed in the field. No symptoms were observed on the negative controls. Diagnostic amplification of DNA by conventional PCR was carried out and yielded the expected amplicon size of 420 bp of the Dickeya-specific pel gene with the ADE primers set (2). PCR was used to amplify the 16S rRNA gene with the universal primers 27f and 1495r (5) for molecular identification of the 13 strains (GenBank Accession Nos. KJ438941, KJ438942, KJ438943, KJ438944, KJ438945, KJ438946, KJ438947, KJ438948, KJ438949, KJ438950, KJ438951, KJ438952, and KJ438953). The strains D. zeae CFBP 2052 and E. chrysanthemi pv. zeae ATCC 29942 were sequenced as positive controls. A BLAST search with the 13 16S rRNA gene sequences of 1.4 kb were 99% identical to the sequence of D. zeae CFBP 2052 (NR_041923). D. zeae can be a major disease of maize in tropical and subtropical countries. It is particularly severe under conditions of high temperature and high humidity, but it occurs sporadically. Control of the vector, Chilo partellus, can aid disease management (1). To our knowledge, this is the first report of D. zeae causing maize stalk rot in Mexico. References: (1) CABI. Crop Prot. Compend. CAB International, Wallingford, UK, 2014. (2) A. Nassar et al. Appl. Environ. Microbiol. 62:2228, 1996. (3) R. Samson et al. Int. J. Syst. Evol. Microbiol. 55:1415, 2005. (4) N. W. Schaad et al. Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd ed. APS Press, St. Paul, MN, 2001. (5) W. G. Weisburg. J. Bacteriol. 173:697, 1991.


2020 ◽  
Vol 98 (2) ◽  
Author(s):  
Harvey C Freetly ◽  
Aaron Dickey ◽  
Amanda K Lindholm-Perry ◽  
Richard M Thallman ◽  
John W Keele ◽  
...  

Abstract We hypothesized cattle that differed in BW gain had different digestive tract microbiota. Two experiments were conducted. In both experiments, steers received a diet that consisted of 8.0% chopped alfalfa hay, 20% wet distillers grain with solubles, 67.75% dry-rolled corn, and 4.25% vitamin/mineral mix (including monensin) on a dry matter basis. Steers had ad libitum access to feed and water. In experiment 1, 144 steers (age = 310 ± 1.5 d; BW = 503 ± 37.2 kg) were individually fed for 105 d. Ruminal digesta samples were collected from eight steers with the greatest (1.96 ± 0.02 kg/d) and eight steers with the least ADG (1.57 ± 0.02 kg/d) that were within ±0.32 SD of the mean (10.1 ± 0.05 kg/d) dry matter. In experiment 2, 66 steers (age = 396 ± 1 d; BW = 456 ± 5 kg) were individually fed for 84 d. Rumen, duodenum, jejunum, ileum, cecum, and colon digesta samples were collected from eight steers with the greatest (2.39 ± 0.06 kg/d) and eight steers with the least ADG (1.85 ± 0.06 kg/d) that were within ±0.55 SD of the mean dry matter intake (11.9 ± 0.1 kg/d). In both studies, DNA was isolated and the V1 to V3 regions of the 16S rRNA gene were sequenced. Operational taxonomic units were classified using 0.03 dissimilarity and identified using the Greengenes 16S rRNA gene database. In experiment 1, there were no differences in the Chao1, Shannon, Simpson, and InvSimpson diversity indexes or the permutation multivariate analysis of variance (PERMANOVA; P = 0.57). The hierarchical test returned six clades as being differentially abundant between steer classifications (P < 0.05). In experiment 2, Chao1, Shannon, Simpson, and InvSimpson diversity indexes and PERMANOVA between steer classified as less or greater ADG did not differ (P > 0.05) for the rumen, duodenum, ileum, cecum, and colon. In the jejunum, there tended to be a difference in the Chao1 (P = 0.09) and Simpson diversity (P = 0.09) indexes between steer classifications, but there was no difference in the Shannon (P = 0.14) and InvSimpson (P = 0.14) diversity indexes. Classification groups for the jejunum differed (P = 0.006) in the PERMANOVA. The hierarchical dependence false discovery rate procedure returned 11 clades as being differentially abundant between steer classifications in the jejunum (P < 0.05). The majority of the OTU were in the Families Corynebacteriaceae and Coriobacteriaceae. This study suggests that intestinal differences in the microbiota of ruminants may be associated with animal performance.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zengxian Yu ◽  
Fang Zhu ◽  
Xinghe Tao ◽  
Lu Zhang ◽  
Suliu Wu ◽  
...  

Abstract Background Vogesella species are common aquatic, Gram-negative rod-shaped bacteria, originally described in 1997. Vogesella perlucida was first isolated from spring water in 2008. Furthermore, bacterial pathogenicity of Vogesella perlucida has never been reported. Here, we report the first case of rare Vogesella perlucida-induced bacteremia in an advanced-age patient with many basic diseases and history of dexamethasone abuse. Case presentation A 71-year-old female was admitted with inflamed upper and lower limbs, rubefaction, pain and fever (about 40 °C). She had been injured in a fall at a vegetable market and then touched river snails with her injury hands. A few days later, soft tissue infection of the patient developed and worsened. Non-pigmented colonies were isolated from blood cultures of the patient. Initially, Vogesella perlucida was wrongly identified as Sphingomonas paucimobilis by Vitek-2 system with GN card. Besides, we failed to obtain an acceptable identification by the MALDI-TOF analysis. Finally, the isolated strain was identified as Vogesella perlucida by 16S rRNA gene sequences. In addition, the patient recovered well after a continuous treatment of levofloxacin for 12 days. Conclusion Traditional microbiological testing system may be inadequate in the diagnosis of rare pathogenic bacteria. Applications of molecular diagnostics techniques have great advantages in clinical microbiology laboratory. By using 16S rRNA gene sequence analysis, we report the the first case of rare Vogesella perlucida-induced bacteremia.


Pathogens ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 175 ◽  
Author(s):  
Ghaju Shrestha ◽  
Sherchan ◽  
Kitajima ◽  
Tanaka ◽  
Gerba ◽  
...  

This study aimed to identify the bacterial community in two wastewater treatment plants (WWTPs) and to determine the occurrence and reduction of Arcobacter, along with virulence genes (ciaB and pldA). A total of 48 samples (24 influent and 24 effluent) were collected at two WWTPs in southern Arizona in the United States, monthly from August 2011 to July 2012. Bacterial DNA extract was utilized for 16S rRNA metagenomic sequencing. Quantification of Arcobacter 16S rRNA gene was conducted using a recently developed SYBR Green-based quantitative PCR assay. Among 847 genera identified, 113 (13%) were identified as potentially pathogenic bacteria. Arcobacter 16S rRNA gene was detected in all influent samples and ten (83%) and nine (75%) effluent samples at each plant, respectively. Log reduction ratios of Arcobacter 16S rRNA gene in Plant A and Plant B were 1.7 ± 0.9 (n = 10) and 2.3 ± 1.5 (n = 9), respectively. The ciaB gene was detected by quantitative PCR in eleven (92%) and twelve (100%) of 12 influent samples from Plant A and Plant B, respectively, while the pldA gene was detected in eight (67%) and six (50%) influent samples from Plant A and Plant B, respectively. The prevalence of potentially pathogenic bacteria in WWTP effluent indicated the need for disinfection before discharge into the environment.


2007 ◽  
Vol 73 (22) ◽  
pp. 7259-7267 ◽  
Author(s):  
Rodrigo Mendes ◽  
Aline A. Pizzirani-Kleiner ◽  
Welington L. Araujo ◽  
Jos M. Raaijmakers

ABSTRACT Bacteria were isolated from the rhizosphere and from inside the roots and stems of sugarcane plants grown in the field in Brazil. Endophytic bacteria were found in both the roots and the stems of sugarcane plants, with a significantly higher density in the roots. Many of the cultivated endophytic bacteria were shown to produce the plant growth hormone indoleacetic acid, and this trait was more frequently found among bacteria from the stem. 16S rRNA gene sequence analysis revealed that the selected isolates of the endophytic bacterial community of sugarcane belong to the genera of Burkholderia, Pantoea, Pseudomonas, and Microbacterium. Bacterial isolates belonging to the genus Burkholderia were the most predominant among the endophytic bacteria. Many of the Burkholderia isolates produced the antifungal metabolite pyrrolnitrin, and all were able to grow at 37°C. Phylogenetic analyses of the 16S rRNA gene and recA gene sequences indicated that the endophytic Burkholderia isolates from sugarcane are closely related to clinical isolates of the Burkholderia cepacia complex and clustered with B. cenocepacia (gv. III) isolates from cystic fibrosis patients. These results suggest that isolates of the B. cepacia complex are an integral part of the endophytic bacterial community of sugarcane in Brazil and reinforce the hypothesis that plant-associated environments may act as a niche for putative opportunistic human pathogenic bacteria.


Sign in / Sign up

Export Citation Format

Share Document