scholarly journals High capacitance density highly reliable textured deep trench SiN capacitors toward 3D integration

Author(s):  
Koga Saito ◽  
Ayano Yoshida ◽  
Rihito Kuroda ◽  
Hiroshi Shibata ◽  
Taku Shibaguchi ◽  
...  
2010 ◽  
Vol 2010 (1) ◽  
pp. 000847-000854 ◽  
Author(s):  
Rabindra N. Das ◽  
John M. Lauffer ◽  
Steven G. Rosser ◽  
Mark D. Poliks ◽  
Voya R. Markovich

This paper discusses thin film technology based on barium titanate (BaTiO3)-epoxy polymer nanocomposites. In particular, we highlight recent developments on high capacitance, large area, thin film passives and their integration in System in a Package (SiP). A variety of nanocomposite thin films ranging from 2 microns to 25 microns thick were processed on PWB substrates by liquid coating or printing processes. SEM micrographs showed uniform particle distribution in the coatings. The electrical performance of composites was characterized by dielectric constant (Dk), capacitance and dissipation factor (loss) measurements. We have designed and fabricated several printed wiring board (PWB) and flip-chip package test vehicles focusing on resistors and capacitors. Two basic capacitor cores were used for this study. One is a layer capacitor. The second capacitor in this case study was discrete capacitor. Resin Coated Copper Capacitive (RC3) nanocomposites were used to fabricate 35 mm substrates with a two by two array of 15mm square isolated epoxy based regions; each having two to six RC3 based embedded capacitance layers. Cores are showing high capacitance density ranging from 15 nF to 30nF depending on Cu area, composition and thickness of the capacitors. In another design, we have used eight layer high density internal core and subsequent fine geometry n (1 to 3) buildup layers to form a n-8-n structure. The eight layer internal core has two resistance layers in the middle and 2 to 6 capacitance layer sequentially applied on the surface. The study also evaluates the resistor materials for embedded passives. Resistors are carbon based pastes and metal based alloys NiCrAlSi. Embedded resistor technology can use either thin film materials, that are applied on the copper foil, or screened carbon based resistor pastes that can achieve any resistor value at any level. For example, combination of 25 ohm per square material and 250 ohm per square material enables resistor ranges from 15 ohms through 30,000 ohms with efficient sizes for the embedded resistors. Similarly, printable resistors can be designed to cover the resistance in the range of 5 ohms to 1 Mohm. The embedded resistors can be laser trimmed to a tolerance of <5% for applications that require tighter tolerance. Reliability of the test vehicles was ascertained by IR-reflow, thermal cycling, PCT (Pressure Cooker Test ) and solder shock. Embedded discrete capacitors were stable after PCT and solder shock. Capacitance change was less than 5% after IR reflow (assembly) preconditioning (3X, 245 °C) and 1400 cycles DTC (Deep Thermal Cycle).


2017 ◽  
Vol 110 (24) ◽  
pp. 243501 ◽  
Author(s):  
A. Chaker ◽  
P. Gonon ◽  
C. Vallée ◽  
A. Bsiesy

Author(s):  
Sascha Krause ◽  
Rickard Andersson ◽  
Maria Bylund ◽  
Amin M Saleem ◽  
Mohammad Kabir ◽  
...  

2014 ◽  
Vol 2014 (DPC) ◽  
pp. 001208-001237
Author(s):  
Catherine Bunel ◽  
Florent Lallemand

TSV is one of the key technologies for 3D integration . TSVs co-integrated with passives including high density capacitors enable highly integrated heterogeneous solutions required because of the smaller size of the electronic modules . Even if there is still a lot to do , significant progress has already been done on the process , on the testability , on the performances of these smart interposers .The major progress is in the adoption of the technology .In this paper we'll expose some examples where the adoption was driven by cost, performances & miniaturization. Emphasis will be placed on the performances of the new generation of 3D Silicon capacitors, using key enabling technology like ALD and amazing architecture that allow impressive capacitance density increase.


2015 ◽  
Vol 2015 (DPC) ◽  
pp. 000939-000957
Author(s):  
Florian Herrault ◽  
M. Yajima ◽  
M. Chen ◽  
C. McGuire ◽  
A. Margomenos

Advances in 2.5D and 3D integration technologies are enabling ultra-compact multi-chip modules. In this abstract, we present the design, fabrication, and experimental characterization of RF inductors microfabricated inside deep silicon recesses. Because silicon is often used as a substrate of packaging material for 3D integration and microelectromechanical systems (MEMS), developing microfabrication technologies to embed passive components in the unused volume of the silicon package is a promising approach to realize ultra-compact RF subsystems. Inductors and capacitors are critical in dc-bias circuits for MMICs in order to suppress low-frequency oscillations. Because it is particularly important to have these passive components as close to the MMIC as possible with minimum interconnection parasitics, silicon-embedded passives are an attractive solution. Further, silicon-embedded passives can potentially reduce the overall volume of RF subsystems when compared to modules using discrete passives. Although inductors inside the volume of silicon wafers have previously been reported, they typically operated in the 1–200 MHz frequency range, mostly featuring inductors with wide (50–100 μm) conductors and wide (50–100 μm) interconductor gaps due to fabrication limitations. We first explored process limitations to fabricate structural and electrical features inside 75 to 100-μm-deep silicon cavities. The cavities were etched into the silicon using deep reactive ion etching. Inside these recesses, we demonstrated the fabrication of thin (0.2 μm) and thick (5 μm) gold patterns with 3 μm resolution using lift-off and electroplating processes, respectively. The lift-off process used an image reversal technique, and the plated gold conductors were fabricated through a 6.5-μm-thick photoresist mold. The feature sizes ranged from 3 to 50 μm. For photoresist exposure, an i-line Canon stepper was utilized, and configured specifically to focus at the bottom of the cavities, a key process requirement to achieve high-resolution features. These microfabrication results enabled the design of high-performance RF inductors, which will be discussed in the next section. In addition, we demonstrated the fabrication of 30-μm-deep 3-μm-diameter silicon-etched features inside these cavities, a stepping stone towards achieving high-capacitance-density integrated trench capacitors embedded inside silicon cavities. The silicon-embedded RF inductors were microfabricated on 500-μm-thick high-resistivity (ρ > 20,000 Ω.cm) silicon wafers. First, 75-μm-deep cavities were etched using DRIE. Various two-port coplanar waveguide (CPW) inductor designs were microfabricated. The inductor microfabrication relied on sputtered titanium/gold seed layers, thick AZ4620 photoresist molds, and three 5-μm-thick electroplated gold layers stacked on top of each other to define the inductor conductor and connections. By using a combination of three electroplated layers, high-power-handling low-loss inductors were fabricated. Measurements were performed on a RF probe station, with on-wafer calibration structures. The losses associated with the CPW launchers were de-embedded prior to inductor measurements, and inductor quality factor greater than 40 was measured on various inductors with inductance of approximately 1 nH, and self-resonant frequency at 30 GHz. These results were in agreement with models performed using SONNET simulation package, and are comparable with than that of inductors fabricated on planar silicon wafers.


2006 ◽  
Vol 89 (23) ◽  
pp. 232910 ◽  
Author(s):  
Jong-Hyun Park ◽  
Cheng-Ji Xian ◽  
Nak-Jin Seong ◽  
Soon-Gil Yoon ◽  
Seung-Hyun Son ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document