Desorption of carbon dioxide from monoethanolamine solution via calcium chloride addition under ultrasound irradiation and evaluation of the characteristics of generated calcium carbonate

2021 ◽  
Vol 60 (SD) ◽  
pp. SDDD12
Author(s):  
Yuya Kitamura ◽  
Hirokazu Okawa ◽  
Takahiro Kato ◽  
Katsuyasu Sugawara
2020 ◽  
Vol 59 (SK) ◽  
pp. SKKD08
Author(s):  
Yuya Kitamura ◽  
Hirokazu Okawa ◽  
Takahiro Kato ◽  
Katsuyasu Sugawara

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Charalampos Konstantinou ◽  
Yuze Wang ◽  
Giovanna Biscontin ◽  
Kenichi Soga

AbstractProtocols for microbially induced carbonate precipitation (MICP) have been extensively studied in the literature to optimise the process with regard to the amount of injected chemicals, the ratio of urea to calcium chloride, the method of injection and injection intervals, and the population of the bacteria, usually using fine- to medium-grained poorly graded sands. This study assesses the effect of varying urease activities, which have not been studied systematically, and population densities of the bacteria on the uniformity of cementation in very coarse sands (considered poor candidates for treatment). A procedure for producing bacteria with the desired urease activities was developed and qPCR tests were conducted to measure the counts of the RNA of the Ure-C genes. Sand biocementaton experiments followed, showing that slower rates of MICP reactions promote more effective and uniform cementation. Lowering urease activity, in particular, results in progressively more uniformly cemented samples and it is proven to be effective enough when its value is less than 10 mmol/L/h. The work presented highlights the importance of urease activity in controlling the quality and quantity of calcium carbonate cements.


CrystEngComm ◽  
2021 ◽  
Vol 23 (16) ◽  
pp. 3033-3042
Author(s):  
Liubin Shi ◽  
Mingde Tang ◽  
Yaseen Muhammad ◽  
Yong Tang ◽  
Lulu He ◽  
...  

Herein, calcium carbonate hollow microspheres with a micro–nano hierarchical structure were successfully synthesized using disodium salt of ethylenediaminetetraacetic acid (EDTA-2Na) as an additive, by bubbling pressurized carbon dioxide and calcium hydroxide at 120 °C.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 72
Author(s):  
Vicente Hernandez ◽  
Romina Romero ◽  
Sebastián Arias ◽  
David Contreras

In this study, a novel method for calcium carbonate deposition in wood that increases carbon dioxide concentration and fire resistance is proposed. The method promoted the mineralization of radiata pine wood microstructure with calcium carbonate by using a process consisting in the vacuum impregnation of wood with a calcium chloride aqueous solution and the subsequent sequential diffusion of gaseous ammonium and carbon dioxide. In the most favorable conditions, the method yielded a weight gain of about 20 wt.% due to mineralization, which implied the accumulation of 0.467 mmol·g−1 of carbon dioxide in the microstructure of wood. In addition, a weight gain of about 8% was sufficient to provide fire resistance to a level similar to that achieved by a commercially available fire-retardant treatment. The feasibility of retaining carbon dioxide directly inside the wood microstructure can be advantageous for developing wood products with enhanced environmental characteristics. This method can be a potential alternative for users seeking materials that could be effective at supporting a full sustainable development.


Author(s):  
Theodore Hanein ◽  
Marco Simoni ◽  
Chun Long Woo ◽  
John L Provis ◽  
Hajime Kinoshita

The calcination of calcium carbonate (CaCO3) is a major contributor to carbon dioxide (CO2) emissions that are changing our climate. Moreover, the calcination process requires high temperatures (~900°C). A novel...


2010 ◽  
Vol 654-656 ◽  
pp. 2923-2926 ◽  
Author(s):  
Seiji Yokoyama ◽  
Nik Hisyamudin Muhd Nor ◽  
Shunsuke Hirano

Commercial sedimentation CaCO3 was ground by a vibration rod mill to investigate the physicochemical properties of mechanically activated CaCO3.When the CaCO3of the calcite structure was ground, the intensities of the crystal facesof calcite was decreased by distortions and so on, and the aragonite appeared as the grinding proceeded. The formed aragonite was transformed to the calcite when the sample was heated at 773K for3.6 ks. The dissociation pressure of CO2 of the ground CaCO3was larger than that of the non-ground CaCO3.The enthalpy; entropy and specific heat of change of the dissociation reaction were obtained. At high temperature, the emission rate of the ground CaCO3 was slightly larger than that of the non-ground CaCO3. At room temerature, the CaCO3 adsorbs CO2, and it desorbs the adsorbed CO2. The amount of adsorbed CO2 on the ground CaCO3 was larger than that of the non-ground CaCO3.


1950 ◽  
Vol s3-91 (14) ◽  
pp. 195-203
Author(s):  
A. MOSCONA

1. Weight, moisture content, and mineral content of freshly laid and of fully developed eggs of Bacillus libanicus (Uv.) were studied. During development of the embryo the egg-shell loses 19 per cent, of its initial mineral content, while the weight of mineral materials in the embryo increases correspondingly. 2. These changes can be explained only as resulting from transfer of minerals from the shell to the embryo. The mineral materials are derived from the calcium carbonate layer of the shell, which, owing to this loss, becomes thinner during embryonic development. 3. It is suggested that the mechanism of this transfer is based on the production of bicarbonate by the reaction of water and carbon dioxide, given off by the embryo, with the calcium carbonate of the shell. 4. Experimental calcium deficiency in the egg-shells results in a marked lowering of the viability of the embryos; although embryogenesis may sometimes proceed till the hatching stage, the few emerging nymphs survive only for a short time. 5. The possible occurrence of mineral transfer in other phasmid eggs is indicated.


Sign in / Sign up

Export Citation Format

Share Document