scholarly journals Self-heating effect on logic performance of 6T-SRAM based on CFET device

Author(s):  
Songhan Zhao ◽  
Yandong He ◽  
Xiaoyan Liu ◽  
Gang Du

Abstract CFET devices have become emerging and promising candidates for continuing Moore's law at sub-3 nm nodes owing to the area advantage of the N-P stacked structure, which markedly improves the integration of circuits. However, the introduction of vertical structure leads to severe thermal issues due to the self-heating effect, resulting in the degradation of the device and circuit performance. This paper mainly evaluates and analyzes the performance of the SRAM unit built using the CFET structure. The CFET-SRAM exhibits better performance than the conventional CMOS-SRAM in terms of access delay, even with the impact of self-heating. For the multi-fin-based CFET, although the total gate capacitance increases, the enhanced current improves the static noise margin significantly. However, as the number of channels expands, sheet-based CFET devices show more comprehensive superiority of area and performance.

Nanoscale ◽  
2015 ◽  
Vol 7 (32) ◽  
pp. 13561-13567 ◽  
Author(s):  
T. S. Pan ◽  
M. Gao ◽  
Z. L. Huang ◽  
Y. Zhang ◽  
Xue Feng ◽  
...  

Polymers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 19 ◽  
Author(s):  
Andrzej Katunin

The self-heating effect is a dangerous phenomenon that occurs in polymers and polymer matrix composites during their cyclic loading, and may significantly influence structural degradation and durability as a consequence. Therefore, an analysis of its criticality is highly demanding, due to the wide occurrence of this effect, both in laboratory fatigue tests, as well as in engineering practice. In order to overcome the problem of the accelerated degradation of polymer matrix structures, it is essential to evaluate the characteristic temperature values of self-heating, which are critical from the point of view of the fatigue life of these structures, i.e., the temperature at which damage initiates, and the safe temperature range in which these structures can be safely maintained. The experimental studies performed were focused on the determination of the critical self-heating temperature, using various approaches and measurement techniques. This paper present an overview of the research studies performed in the field of structural degradation, due to self-heating, and summarizes the studies performed on the evaluation of the criticality of the self-heating effect. Moreover, the non-destructive testing method, which uses the self-heating effect as a thermal excitation source, is discussed, and the non-destructivity of this method is confirmed by experimental results.


2006 ◽  
Vol 53 (8) ◽  
pp. 159-166 ◽  
Author(s):  
H. Lindorfer ◽  
R. Braun ◽  
R. Kirchmayr

With the increasing application of energy crops in agricultural biogas plants and increasing digester volumes, the phenomenon of self-heating in anaerobic digesters appeared in some cases. Until now this development was just known from aerobic systems. To obtain an idea of the thermodynamics inside an anaerobic digester, a detailed analysis of all heat fluxes in a full-scale agricultural biogas plant was carried out. Several experiments were realised to quantify the influences of different internal and external energy sources. To estimate the impact of self-heating in anaerobic systems, data of other full-scale agricultural biogas plants in Austria were collected. Alternatives to the cooling of the digesters are discussed based on individual experiences of several plants. A connection between carbohydrate-rich substrates, especially with high starch contents, and the self-heating could be shown. From the results it can be assumed that the anaerobic digestion of most energy crops is exothermic, which is in contrast to the current thermodynamic belief.


Fuel ◽  
2014 ◽  
Vol 118 ◽  
pp. 186-193 ◽  
Author(s):  
Hongfan Guo ◽  
Jiadong Lin ◽  
Yindong Yang ◽  
Yunyi Liu

Sign in / Sign up

Export Citation Format

Share Document