Design and characteristics of reflectivity tunable mirror with MZI and loop waveguide on SOI

Author(s):  
Yutaka Makihara ◽  
Moataz Eissa ◽  
Tomohiro AMEMIYA ◽  
Nobuhiko Nishiyama

Abstract To achieve a reconfigurable photonic integrated circuit with active elements, we proposed a reflectivity tunable mirror constructed using a Mach–Zehnder interferometer (MZI) with a micro heater and loop waveguide on a silicon photonics platform. In this paper, the principle of the operation, design, fabrication, and measurement results of the mirror are presented. In theory, the phase shift dependence of the mirror relies on the coupling coefficient of the directional couplers of the MZI. When the coupling coefficient κ2 was 0.5 and 0.15, the reflection could be turned on and off with a phase shift of π/2 and π, respectively. The reflection power of the fabricated mirror on the silicon on insulator (SOI) substrate was changed by more than 20 dB by a phase shift. In addition, it was demonstrated that the phase shift dependence of the mirror changes with the coupling coefficient of the fabricated devices.

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1646
Author(s):  
Jingya Xie ◽  
Wangcheng Ye ◽  
Linjie Zhou ◽  
Xuguang Guo ◽  
Xiaofei Zang ◽  
...  

In the last couple of decades, terahertz (THz) technologies, which lie in the frequency gap between the infrared and microwaves, have been greatly enhanced and investigated due to possible opportunities in a plethora of THz applications, such as imaging, security, and wireless communications. Photonics has led the way to the generation, modulation, and detection of THz waves such as the photomixing technique. In tandem with these investigations, researchers have been exploring ways to use silicon photonics technologies for THz applications to leverage the cost-effective large-scale fabrication and integration opportunities that it would enable. Although silicon photonics has enabled the implementation of a large number of optical components for practical use, for THz integrated systems, we still face several challenges associated with high-quality hybrid silicon lasers, conversion efficiency, device integration, and fabrication. This paper provides an overview of recent progress in THz technologies based on silicon photonics or hybrid silicon photonics, including THz generation, detection, phase modulation, intensity modulation, and passive components. As silicon-based electronic and photonic circuits are further approaching THz frequencies, one single chip with electronics, photonics, and THz functions seems inevitable, resulting in the ultimate dream of a THz electronic–photonic integrated circuit.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Milan M. Milošević ◽  
Weining Man ◽  
Geev Nahal ◽  
Paul J. Steinhardt ◽  
Salvatore Torquato ◽  
...  

AbstractWe introduce a hyperuniform-disordered platform for the realization of near-infrared photonic devices on a silicon-on-insulator platform, demonstrating the functionality of these structures in a flexible silicon photonics integrated circuit platform unconstrained by crystalline symmetries. The designs proposed advantageously leverage the large, complete, and isotropic photonic band gaps provided by hyperuniform disordered structures. An integrated design for a compact, sub-volt, sub-fJ/bit, hyperuniform-clad, electrically controlled resonant optical modulator suitable for fabrication in the silicon photonics ecosystem is presented along with simulation results. We also report results for passive device elements, including waveguides and resonators, which are seamlessly integrated with conventional silicon-on-insulator strip waveguides and vertical couplers. We show that the hyperuniform-disordered platform enables improved compactness, enhanced energy efficiency, and better temperature stability compared to the silicon photonics devices based on rib and strip waveguides.


Author(s):  
Ting Yu ◽  
DeGui Sun

Hyperthermal oxidation of silicon is envisaged to be an alternative to silicon-on-insulator (SOI) waveguide fabrication for photonic integrated circuit (PIC) devices, and thus the local oxidation of silicon (LOCOS) technique has attracted attention.


2021 ◽  
Author(s):  
Almir Wirth Lima Junior ◽  
Wilton Bezerra-Fraga

Abstract We are presenting graphene-based Binary Phase Shift Keying (BPSK) and Quadrature Phase Shift Keying (QPSK) modulators, which can operate in the range from the TeraHertz up to the infrared. It is noteworthy that these devices have huge advantages over the silicon Mach-Zehnder optical modulators (MZMs) with lateral PN-junction ribwaveguide phase shifters. Among the countless advantages, we can mention, for example, that these modulators consist of only one waveguide and have a much simpler application system of the modulator signal (gate voltage) than in silicon-based MZMs. Other huge advantages are greater efficiency, and yet, they are cheaper and have shorter lengths (and consequently, greater integration in photonic integrated circuit (PIC)). The first step to present these modulators was to detail the graphene theory that is involved in this device. After this step, we show the project, numerical simulations, and analyses related to our graphene-based BPSK and QPSK modulators. We believe that these modulators will contribute to the generation of new devices made up of 2D materials, which should revolutionize this area of science.


Photonics ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 492
Author(s):  
Amlan kusum Mukherjee ◽  
Mingjun Xiang ◽  
Sascha Preu

Present-day photonic terahertz (100 GHz–10 THz) systems offer dynamic ranges beyond 100 dB and frequency coverage beyond 4 THz. They yet predominantly employ free-space Terahertz propagation, lacking integration depth and miniaturisation capabilities without sacrificing their extreme frequency coverage. In this work, we present a high resistivity silicon-on-insulator-based multimodal waveguide topology including active components (e.g., THz receivers) as well as passive components (couplers/splitters, bends, resonators) investigated over a frequency range of 0.5–1.6 THz. The waveguides have a single mode bandwidth between 0.5–0.75 THz; however, above 1 THz, these waveguides can be operated in the overmoded regime offering lower loss than commonly implemented hollow metal waveguides, operated in the fundamental mode. Supported by quartz and polyethylene substrates, the platform for Terahertz photonic integrated circuits (Tera-PICs) is mechanically stable and easily integrable. Additionally, we demonstrate several key components for Tera-PICs: low loss bends with radii ∼2 mm, a Vivaldi antenna-based efficient near-field coupling to active devices, a 3-dB splitter and a filter based on a whispering gallery mode resonator.


2021 ◽  
Author(s):  
Veer Chandra ◽  
Dablu Kumar ◽  
Rakesh Ranjan

Abstract The requirement of low crosstalk between the neighboring waveguides should be considered essentially, in order to achieve the compact photonic integrated circuit (PIC), which includes photonic waveguides. Literature shows that the lower crosstalk can be realized by using the silicon-on-insulator (SOI) based waveguide, having an appropriate separation between them. The current work is focused on reducing the waveguide separation to further improve the photonic integration over the PICs. This has been achieved by inserting the germanium strips between the photonic waveguides. The investigations of the impact of variations in heights and widths of germanium strip have demonstrated that the crosstalk can be reduced by a significant amount, which provides noteworthy improvement in coupling length. The maximum coupling lengths of 81578 µm, 67099 µm, and 66810 µm have been achieved at their respective end-to-end separations of 300 nm, 250 nm, and 200 nm, and their corresponding minimum crosstalk values have been noted as -29.40 dB, -27.71 dB, and − 27.70 dB. Moreover, the analysis to realize the coupling length for Ge-strip, have been compared with the Si-, and SiN-strips. The approach presented in the current work can be utilized for the design of many compact photonic applications, such as polarization splitter, integrated photonic switches, etc.


Sign in / Sign up

Export Citation Format

Share Document