Reduction in dislocation densities in 4H-SiC bulk crystal grown at high growth rate by high-temperature gas-source method

2020 ◽  
Vol 13 (9) ◽  
pp. 095502
Author(s):  
Norihiro Hoshino ◽  
Isaho Kamata ◽  
Takahiro Kanda ◽  
Yuichiro Tokuda ◽  
Hironari Kuno ◽  
...  
2014 ◽  
Vol 778-780 ◽  
pp. 59-62 ◽  
Author(s):  
Isaho Kamata ◽  
Norihiro Hoshino ◽  
Yuichiro Tokuda ◽  
Emi Makino ◽  
Jun Kojima ◽  
...  

This paper reports on evidence of high-quality and very fast 4H-SiC crystal growth achieved using a high-temperature gas source method. The formation of threading screw dislocations (TSDs) during crystal growth was examined by comparing synchrotron X-ray topography images taken for a seed and grown crystals, while the generation of a high density of new TSDs is observed under improper growth condition. High-quality crystal growth retaining the TSD density of the seed crystal was accomplished under an improved condition, even for a very high growth rate of 2.1 mm/h.


2020 ◽  
Vol 1004 ◽  
pp. 5-13
Author(s):  
Yuichiro Tokuda ◽  
Norihiro Hoshino ◽  
Hironari Kuno ◽  
Hideyuki Uehigashi ◽  
Takeshi Okamoto ◽  
...  

The process conditions for fast growth of 4 in. 4H-polytype SiC (4H-SiC) single crystals were studied for high-temperature gas source method. Prior to experiments, crystal growth simulations were conducted to investigate the influence of vertical gas-flow velocity on the radial distribution of the growth rate. Crystal growth experiments were performed using the crucibles designed for 4 in. crystal growth following the simulation studies. By investigating growth rate as functions of the input partial pressure of source gases and temperatures of growing surfaces, expressions for the growth rate of 4-in. crystals were derived. We also clarified the optimal conditions for single-crystal growth. Finally, fast growth of 4 in. 4H-SiC crystals with uniform shape was demonstrated.


2014 ◽  
Vol 778-780 ◽  
pp. 55-58 ◽  
Author(s):  
Norihiro Hoshino ◽  
Isaho Kamata ◽  
Yuichiro Tokuda ◽  
Emi Makino ◽  
Jun Kojima ◽  
...  

Possibilities of very fast 4H-SiC crystal growth using a high-temperature gas source method are surveyed by computational simulation and experimental studies. The temperature range suitable to obtain high growth rates are investigated by simulating temperature dependences of growth rates for H2+SiH4+C3H8 and H2 +SiH4+C3H8+HCl gas systems. Simulation and experimental results demonstrate that an increase in source gas flow rates as well as gas-flow velocities enhance growth rates. High growth rates exceeding 1 mm/h are experimentally obtained using both gas systems. Single crystal growth on a 3-inch diameter seed crystal is also demonstrated.


2015 ◽  
Vol 821-823 ◽  
pp. 104-107 ◽  
Author(s):  
Jun Kojima ◽  
Emi Makino ◽  
Yuichiro Tokuda ◽  
Naohiro Sugiyama ◽  
Notihiro Hoshino ◽  
...  

This article gives the results of crystal growth by a High-Temperature Gas Source Method such as HTCVD. It was reported that clusters were formed and were an important factor of the growth in HTCVDs, and some influences of them were investigated. The difference between the model with and without clustering was compared. The experimental growth rates corresponded to the cluster model, and this indicated that clusters affect the crystal growth. Relations between the experimental growth rate and the growth temperature as a function of gas flow ratio were investigated. The gas flow ratio was defined: (SiH4+C3H8) / (SiH4+C3H8+H2). Maximum growth rate was 2.3mm/h under high source gas ratio. At present, a Φ75mm×54mm sized ingot has been developed.


2016 ◽  
Vol 858 ◽  
pp. 29-32 ◽  
Author(s):  
Norihiro Hoshino ◽  
Isaho Kamata ◽  
Yuichiro Tokuda ◽  
Emi Makino ◽  
Naohiro Sugiyama ◽  
...  

Limitations in the very fast growth of 4H-SiC crystals are surveyed for a high-temperature gas source method. The evolution of macro-step bunching and void formation in crystal growth is investigated by changing the partial pressures of the source gases and crystal rotation speeds. The variation in macro-step formation depending on radial positions, where step-flow or spiral growth governs, of a grown crystal is also revealed. Based on the relation between growth conditions and macro-step bunching, a trade-off between growth rate enhancement and crystal quality and a method to improve such trade-off are discussed. Nitrogen at a high concentration under very high growth rates in the high-temperature gas source method is also investigated.


2014 ◽  
Vol 7 (6) ◽  
pp. 065502 ◽  
Author(s):  
Norihiro Hoshino ◽  
Isaho Kamata ◽  
Yuichiro Tokuda ◽  
Emi Makino ◽  
Naohiro Sugiyama ◽  
...  

2016 ◽  
Vol 858 ◽  
pp. 23-28 ◽  
Author(s):  
Jun Kojima ◽  
Yuichiro Tokuda ◽  
Emi Makino ◽  
Naohiro Sugiyama ◽  
Norihiro Hoshino ◽  
...  

In order to diffuse the use of SiC, mass-production technologies of SiC wafers are needed. It is easy to be understood that high-speed and long-sized growth technologies are connected directly with mass-production technologies. The gas source growth method such as HT-CVD has the possibilities and the potential of the high-speed and long-sized growth. In this article, it was clarified that the high growth rate were achieved by the control of the source gas partial pressures and by the gas boundary layers. The average growth rate was 1mm/h on the f4 inch-diameter crystal, and the maximum growth rate reached 3.6 mm/h on the 12.5x25 mm tetragon by the above gas control. The crystal qualities of the gas source methods were also evaluated the equivalent level in comparison with the sublimation method. Concerning the 1mm/h-growth f3 inch crystal, the densities of TSDs were kept in the 102 cm-2 levels from the seed to the upper-side of the ingot. Moreover, the ingot size increased year by year and a f4 inch x 43 mm sized ingot has been developed.


1993 ◽  
Vol 312 ◽  
Author(s):  
Sarah R. Kurtz ◽  
J. M. Olson ◽  
D. J. Arent ◽  
A. E. Kibbler ◽  
K. A. Bertness

AbstractThe band gap of Ga0.5In0.5P is studied as a function of growth temperature, growth rate, and substrate misorientation. As each of these parameters is independently varied the band gap first decreases, then increases, resulting in “U” shaped curves. Each “U” shaped curve shifts if any other growth parameter is varied. The data presented here can be divided into two regions of parameter space. In the low temperature, low substrate misorientation, high growth rate region, the band gap is shown to decrease with increasing growth temperature, decreasing growth rate, and increasing substrate misorientation. In the high temperature, high substrate misorientation, low growth rate region, the opposite trends are observed. The implications of these data on the ordering mechanism are discussed.


1998 ◽  
Vol 191 (1-2) ◽  
pp. 31-33 ◽  
Author(s):  
Xiaobing Li ◽  
Dianzhao Sun ◽  
Jianping Zhang ◽  
Meiying Kong

Author(s):  
Dario Schiavon ◽  
Elżbieta Litwin-Staszewska ◽  
Rafał Jakieła ◽  
Szymon Grzanka ◽  
Piotr Perlin

The effect of growth temperature and precursor flows on the doping level and surface morphology of Ge-doped GaN layers was researched. The results show that germanium is more readily incorporated at low temperature, high growth rate and high V/III ratio, thus revealing a similar behavior to what was previously observed for indium. V-pit formation can be blocked at high temperature but also at low V/III ratio, the latter of which however causing step bunching.


Sign in / Sign up

Export Citation Format

Share Document