Hydrogen migration in BaTiO3-based dielectrics under high humidity and electric field bias

Author(s):  
Yoshito Saito ◽  
Tomoyuki Nakamura ◽  
Kenichi Nada ◽  
Harunobu Sano ◽  
Isao Sakaguchi

Abstract This study investigates the possibility of hydrogen migration in BaTiO3-based dielectrics to improve the electrical reliability of multi-layer ceramic capacitors under conditions of high temperature, humidity, and electric field bias. It was observed that the deuterium in the dielectric drifted and migrated with the electric field, suggesting that deuterium exists as D+. The activation energy was found to be 0.34 eV, which is lower than that observed in previous studies. This finding offers a better understanding of the mechanism behind the migration of deuterium in a dielectric, which is highly relevant to future research in dielectrics and electronic components.

2003 ◽  
Vol 762 ◽  
Author(s):  
A. Gordijn ◽  
J.K. Rath ◽  
R.E.I. Schropp

AbstractDue to the high temperatures used for high deposition rate microcrystalline (μc-Si:H) and polycrystalline silicon, there is a need for compact and temperature-stable doped layers. In this study we report on films grown by the layer-by-layer method (LbL) using VHF PECVD. Growth of an amorphous silicon layer is alternated by a hydrogen plasma treatment. In LbL, the surface reactions are separated time-wise from the nucleation in the bulk. We observed that it is possible to incorporate dopant atoms in the layer, without disturbing the nucleation. Even at high substrate temperatures (up to 400°C) doped layers can be made microcrystalline. At these temperatures, in the continuous wave case, crystallinity is hindered, which is generally attributed to the out-diffusion of hydrogen from the surface and the presence of impurities (dopants).We observe that the parameter window for the treatment time for p-layers is smaller compared to n-layers. Moreover we observe that for high temperatures, the nucleation of p-layers is more adversely affected than for n-layers. Thin, doped layers have been structurally, optically and electrically characterized. The best n-layer made at 400°C, with a thickness of only 31 nm, had an activation energy of 0.056 eV and a dark conductivity of 2.7 S/cm, while the best p-layer made at 350°C, with a thickness of 29 nm, had an activation energy of 0.11 V and a dark conductivity of 0.1 S/cm. The suitability of these high temperature n-layers has been demonstrated in an n-i-p microcrystalline silicon solar cell with an unoptimized μc-Si:H i-layer deposited at 250°C and without buffer. The Voc of the cell is 0.48 V and the fill factor is 70 %.


Alloy Digest ◽  
1975 ◽  
Vol 24 (9) ◽  

Abstract BERYLCO NICKEL ALLOY 440 is an age-hardenable nickel-beryllium-titanium alloy that offers high strength, excellent spring properties outstanding formability, good high-temperature mechanical properties, and resistance to corrosion and fatigue. Complex shapes can be produced in the solution-treated (soft) condition and then aged to a minimum tensile strength of 215,500 psi. It is used for mechanical and electrical/electronic components in the temperature range -320 to 800 F. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-94. Producer or source: Kawecki Berylco Industries Inc.. Originally published September 1964, revised September 1975.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 581
Author(s):  
Abdulhakim A. Almajid

This study is focused on the deformation mechanism and behavior of naturally aged 7010 aluminum alloy at elevated temperatures. The specimens were naturally aged for 60 days to reach a saturated hardness state. High-temperature tensile tests for the naturally aged sample were conducted at different temperatures of 573, 623, 673, and 723 K at various strain rates ranging from 5 × 10−5 to 10−2 s−1. The dependency of stress on the strain rate showed a stress exponent, n, of ~6.5 for the low two temperatures and ~4.5 for the high two temperatures. The apparent activation energies of 290 and 165 kJ/mol are observed at the low, and high-temperature range, respectively. These values of activation energies are greater than those of solute/solvent self-diffusion. The stress exponents, n, and activation energy observed are rather high and this indicates the presence of threshold stress. This behavior occurred as a result of the dislocation interaction with the second phase particles that are existed in the alloy at the testing temperatures. The threshold stress decreases in an exponential manner as temperature increases. The true activation energy was computed by incorporating the threshold stress in the power-law relation between the stress and the strain. The magnitude of the true activation energy, Qt dropped to 234 and 102 kJ/mol at the low and high-temperature range, respectively. These values are close to that of diffusion of Zinc in Aluminum and diffusion of Magnesium in Aluminum, respectively. The Zener–Hollomon parameter for the alloy was developed as a function of effective stress. The data in each region (low and high-temperature region) coalescence in a segment line in each region.


2020 ◽  
Vol 92 (2) ◽  
pp. 20601
Author(s):  
Abdelaziz Labrag ◽  
Mustapha Bghour ◽  
Ahmed Abou El Hassan ◽  
Habiba El Hamidi ◽  
Ahmed Taoufik ◽  
...  

It is reported in this paper on the thermally assisted flux flow in epitaxial YBa2Cu3O7-δ deposited by Laser ablation method on the SrTiO3 substrate. The resistivity measurements ρ (T, B) of the sample under various values of the magnetic field up to 14T in directions B∥ab-plane and B∥c-axis with a dc weak transport current density were investigated in order to determine the activation energy and then understand the vortex dynamic phenomena and therefore deduce the vortex phase diagram of this material. The apparent activation energy U0 (B) calculated using an Arrhenius relation. The measured results of the resistivity were then adjusted to the modified thermally assisted flux flow model in order to account for the temperature-field dependence of the activation energy U (T, B). The obtained values from the thermally assisted activation energy, exhibit a behavior similar to the one showed with the Arrhenius model, albeit larger than the apparent activation energy with ∼1.5 order on magnitude for both cases of the magnetic field directions. The vortex glass model was also used to obtain the vortex-glass transition temperature from the linear fitting of [d ln ρ/dT ] −1 plots. In the course of this work thanks to the resistivity measurements the upper critical magnetic field Hc2 (T), the irreversibility line Hirr (T) and the crossover field HCrossOver (T) were located. These three parameters allowed us to establish a phase diagram of the studied material where limits of each vortex phase are sketched in order to optimize its applicability as a practical high temperature superconductor used for diverse purposes.


Sign in / Sign up

Export Citation Format

Share Document