scholarly journals Genetic Variance Components in Cotton by Generation Mean Analysis

2021 ◽  
Vol 3 (2) ◽  
pp. 72-85
Author(s):  
A. Isong ◽  
A. Balu ◽  
A. Ahmed ◽  
J. O. Mbe ◽  
I. G. Mohammed ◽  
...  

The mode of gene action for the expression of quantitative traits is decided by the predominance of variances due to additive, dominance and epistasis gene effects. In this experiment, involving four F1 crosses (TCH1716 x TCB37, TCH1705-101 x TCB209, KC2 x TCB26 and TSH0250 x DB3) of upland cotton, inheritance of major yield components by Generation Mean Analysis was investigated. The investigation revealed that both additive and dominance gene effects were involved in the expression of most of the yield contributing traits. One or more types of epistatic interaction effects were prevalent for all the characters and thus played a major role in the control of the characters. The inheritance of the traits was found to be complex in lieu of the low heritability estimates and genetic advance over mean. For seed cotton yield per plant, the dominance x dominance interaction effect was positively significant for all the crosses, the additive x dominance effect was positively significant only in cross 1 and the dominance main effect showed negative significant in all crosses. The dominance (h) and dominance x dominance (l) effects were of opposite signs in all the crosses indicating the presence of duplicate epistasis in all the crosses. To harness additive gene effects for improvement of some of the traits, breeding methods with postponement of selection to later generation should be adopted.

2010 ◽  
Vol 39 (9) ◽  
pp. 1952-1960
Author(s):  
Elizângela Emídio Cunha ◽  
Ricardo Frederico Euclydes ◽  
Paulo Sávio Lopes ◽  
Robledo de Almeida Torres ◽  
Paulo Luiz Souza Carneiro

The aim of this work was to investigate the short-term behavior of the genetic variability of quantitative traits simulated from models with additive and non-additive gene action in control and phenotypic selection populations. Both traits, one with low (h² = 0.10) and the other with high (h² = 0.60) heritability, were controlled by 600 biallelic loci. From a standard genome, it was obtained six genetic models which included the following: only the additive gene effects; complete and positive dominance for 25, 50, 75 and 100% of the loci; and positive overdominance for 50% of the loci. In the models with dominance deviation, the additive allelic effects were also included for 100% of the loci. Genetic variability was quantified from generation to generation using the genetic variance components. In the absence of selection, genotypic and additive genetic variances were higher. In the models with non-additive gene action, a small magnitude covariance component raised between the additive and dominance genetic effects whose correlation tended to be positive on the control population and negative under selection. Dominance variance increased as the number of loci with dominance deviation or the value of the deviation increased, implying on the increase in genotypic and additive genetic variances among the successive models.


Author(s):  
Jaya Parkash Yadav ◽  
R. K. Giri ◽  
S. K. Verma

Background: The nature and magnitude of gene action decides the choice of breeding procedure for achieving desired genetic improvement in any crop. It is particularly important to have an idea of gene interactions for getting genetic advance for polygenic traits such as yield and fiber traits in cotton. Method: The current study was undertaken to investigate the gene action controlling yield and components traits in eight Gossypium hirsutum varieties by using means of the six generations (P1, P2, F1, F2, BC1 and BC2) of 8 x 8 diallel crossing program. The mean of the crosses for the traits in each generation were used for generation mean analysis. Conclusion: Results revealed that the estimated mean effects (m) were highly significant for all traits, indicating quantitative inheritance of these traits. Out of the seven traits under study five traits showed significance for at least one scaling test. Additive and dominant gene effects were significant for seed cotton yield and number of monopods with larger magnitude of dominance effects than additive ones. Dominance, additive x dominance and dominance x dominance were significant for boll weight, number of monopods, seed cotton yield and seed index. Narrow-sense heritability and genetic advance were found low for most of the traits.


Author(s):  
Tuntun Naing ◽  
S.K. Verma ◽  
R.K. Panwar ◽  
A.K. Gaur ◽  
Charupriya Chauhan ◽  
...  

Background: For improvement of quantitative traits the information on nature of gene action is an important asset for plant breeders. However, the information on gene action for yield and its attributes is scanty in pigeonpea crop. Methods: The present experiment was carried out during kharif 2018-2020 at GBPUAT, Pantnagar, Uttarakhand. The experimental material consisted of six generations of three crosses viz., PADT-16 × PUSA 992, PADT-16 × UPAS 120 and PADT-16 × PAU 881. The observations were recorded on nine morphological characters. The gene action was estimated by three parameters model of Jinks and Jones if scaling tests were non significant and six parameters model of Hayman if scaling tests were significant. Result: For majority of traits in all three crosses, epistatic gene action was present as scaling tests were found to be significant. However, for traits number of primary branches, number of secondary branches and number of seeds per pod in cross PADT-16 × UPAS 120 a simple additive/dominance model was found to be adequate. In general, magnitude of dominance was found to be higher as compared to corresponding additive gene action. The high magnitude of dominance indicated that heterosis breeding is rewarding in these characters.


Author(s):  
Biswajit Lenka ◽  
Bhabendra Baisakh ◽  
Manasi Dash ◽  
Devraj Lenka ◽  
Swapan Kumar Tripathy

Background: Mungbean is one of the most important legume crop with high nutritional value and is consumed in various forms in different parts of India. In order to meet its growing demand, there is a need to increase the yield through adoption of breeding approaches like heterosis breeding and breeding for high yielding varieties. This demands a critical study of the gene action involved in regulation of yield and yield attributing traits which can be achieved through generation mean analysis. Methods: In the present study, generation mean analysis was undertaken using five parameter model to estimate the nature and magnitude of gene action of yield and its component traits in six crosses of greengram. Result: Magnitude of dominance gene effect was reported to be higher than additive gene effect in most of the crosses. Either one or both the interaction components were found significant for all the traits besides number of branches per plant and hundred seed weight. It was evident from the study that the yield components could be improved by exploiting both additive and non-additive gene effects. The transgressive segregants thus produced will prompt the development of desirable high yielding genotypes.


Author(s):  
Alireza Haghighi Hasanalideh ◽  
Mehrzad Allahgholipour ◽  
Ezatollah Farshadfar

This study was undertaken to assess the combining ability of 6 rice varieties, for viscosity parameters and determining gene action controlling Rapid Visco Analyser (RVA) characters. F2 progenies derived from a 6×6 half diallel mating design with their parents were grown in a randomized complete block design with three replications at the research farm of Rice Research Institute of Iran (RRII) in 2015. The diallel analysis by Griffing`s method indicated the involvement of additive and non-additive gene actions controlling RVA traits. For traits PV and FV RI18447-2 and IR50 were the best combiners for increasing and decreasing, respectively. Deylamani and IR50 were the best combiners for increasing and decreasing BV, respectively. Beside, due to more portion of non-additive gene action in controlling trait SV, The Gilaneh × RI18430-46, and Deylamani × RI18430-46 crosses were the best for increasing and decreasing SV, respectively. The high estimates of broad sense heritability and narrow sense heritability for BV and FV, indicated the importance of additive effects in expression of these traits. Therefore, selection base breeding methods will be useful to improve these traits and selection in the early generations could be done to fix the favourable genes. Low estimate of narrow sense heritability for SV revealed that non-additive gene effects play important role in controlling setback viscosity. So, hybrid base breeding methods will be useful to improve this trait.


2007 ◽  
Vol 20 (2) ◽  
pp. 23-30 ◽  
Author(s):  
Z. I. Sarker ◽  
A. K. M. Shamsuddin ◽  
R. Ara

Estimates of gene action for lodging related traits at Wheat Research Center during 1999-2002 in three crosses of wheat showed different genetic control of the traits among the crosses. For almost all traits, additive or dominance effects or both components were significant in either three- or six-parameter model, indicating that both additive and dominance gene effects were operative for different traits contributing to lodging resistance. Although duplicate type of epistasis was also observed for second internode breaking strength, plant height and spikes per plant and grain yield per plant once in different crosses, additive x additive epistasis along with additive gene action for the aforesaid traits would improve selection of the same in the segregating populations. The additive x dominance gene interaction for second internode length, diameter and wall thickness would be useful too for improvement of second internode breaking strength and consequently lodging resistance, as their inheritance and selection in segregating populations would be relatively easier than the traits controlled by completely non-additive genes. For duplicate type of epistasis biparental mating or recurrent selection followed by conventional selection is suggested.DOI: http://dx.doi.org/10.3329/bjpbg.v20i2.17031


2016 ◽  
Vol 8 (11) ◽  
pp. 138 ◽  
Author(s):  
Lawrence Owere ◽  
Pangirayi Tongoona ◽  
John Derera ◽  
Nelson Wanyera

<p>Blast disease is the most important biotic constraint to finger millet production. Therefore disease resistant varieties are required. However, there is limited information on combining ability for resistance and indeed other agronomic traits of the germplasm in Uganda. This study was carried out to estimate the combining ability and gene effects controlling blast disease resistance and selected agronomic traits in finger millet. Thirty six crosses were generated from a 9 × 9 half diallel mating design. The seed from the 36 F<sub>1</sub> crosses were advanced by selfing and the F<sub>2</sub> families and their parents were evaluated in three replications. General combining ability (GCA) for head blast resistance and the other agronomic traits were all highly significant (p ≤ 0.01), whereas specific combining ability (SCA) was highly significant for all traits except grain yield and grain mass head<sup>-1</sup>. On partitioning the mean sum of squares, the GCA values ranged from 31.65% to 53.05% for head blast incidence and severity respectively, and 36.18% to 77.22% for the other agronomic traits measured. Additive gene effects were found to be predominant for head blast severity, days to 50% flowering, grain yield, number of productive tillers plant<sup>-1</sup>, grain mass head<sup>-1</sup>, plant height and panicle length. Non-additive gene action was predominant for number of fingers head<sup>-1</sup>, finger width and panicle width. The parents which contributed towards high yield were <em>Seremi 2</em>, <em>Achaki</em>, <em>Otunduru</em>, <em>Bulo</em> and <em>Amumwari</em>. Generally, highly significant additive gene action implied that progress would be made through selection whereas non-additive gene action could slow selection progress and indicated selection in the later generations.</p>


2018 ◽  
Vol 43 (4) ◽  
pp. 599-609
Author(s):  
ANMS Karim ◽  
S Ahmed ◽  
AH Akhi ◽  
MZA Talukder ◽  
A Karim

Combining ability effects were estimated for grain yield and some other important agronomic traits of maize in a 7×7 diallel analysis excluding reciprocals. The variances for general combining ability (GCA) were found significant for yield, days to pollen shedding, days to silking and ear height while it was found non-significant for plant height and number of kernels/ear. Non-significant general combining ability (GCA) variance for plant height and number of kernels/ear indicates that these two traits were predominantly controlled by non- additive type of gene action. Specific combining ability (SCA) was significant for all the characters except yield and days to silking. Non-significant specific combining ability (SCA) variance for yield and days to silking suggests that these two traits were predominantly controlled by additive type of gene action. Both GCA and SCA variances were found significant only in days to pollen shedding and ear height indicated the presence of additive as well as non additive gene effects for controlling the traits. However, relative magnitude of these variances indicated that additive gene effects were more prominent for all the characters studied except days to silking. Parent BIL95 was the best general combiner for both high yield and number of kernels/ear and parent BML4 for dwarf plant type. Two crosses (BML4× BML36 and BIL114× BIL31) exhibited significant and positive SCA effects for grain yield involved low × average and average × average general combining parents. The range of heterosis expressed by different crosses for grain yield and days to silking was from -65.83 to 21.26 percent and -17.85 to 8.22 percent, respectively.. The better performing three crosses (BIL114×BIL31, BIL138×BIL95 and BIL31×BIL95) can be utilized for developing high yielding hybrid varieties as well as for exploiting hybrid vigour.Bangladesh J. Agril. Res. 43(4): 599-609, December 2018


Author(s):  
Harinarayan Bind ◽  
Baudh Bharti ◽  
M. K. Pandey ◽  
Sanjeev Kumar ◽  
Vishwanath ◽  
...  

The experimental material for present study consisted of 30 diverse genotypes of oat. Observation were recorded on 11 quantitative traits in oat. High estimates of heritability (broad sense) were obtained for all the characters. The magnitude of PCV as expected was greater than the corresponding GCV for all the characters indicating importance of environment in expression of characters On the basis of result Out of 11 characters studied seeds per panicle, dry matter yield per plant, green fodder yield per plant and harvest index showed high GCV and heritability coupled with high genetic advance as percent of mean which revealed that these four traits might be under control of additive gene effects and therefore they are more reliable for effective selection.


Author(s):  
Shayla Bindra ◽  
R. K. Mittal ◽  
V. K. Sood ◽  
H. K. Chaudhary

Gene effects for 13 characters in four crosses of Vigna mungo were studied by six parameter generation mean model to determine the potential for the improvement of yield components. Scaling tests revealed inadequacy of the additive-dominance model for all the traits indicating the presence of non-allelic interactions. Duplicate gene action was observed for six characters in KUG-216 x HPBU-111, five in KUG-216 x Palampur-93, two in IPU-05-13 x Palampur-93 and one in IPU-05-13 x HPBU-111 and complementary gene action for one character each in KUG-216 x Palampur-93 and IPU-05-13 x HPBU-111 cross. Selection in later generations for duplicate gene action and early generation selection involving intermatings in F2 f or complementary gene action should be adopted for harnessing desirable recombinants.


Sign in / Sign up

Export Citation Format

Share Document