scholarly journals GENE ACTIONS OF TRAITS CONTRIBUTING TO LODGING RESISTANCE IN WHEAT (Triticum aestivum L)

2007 ◽  
Vol 20 (2) ◽  
pp. 23-30 ◽  
Author(s):  
Z. I. Sarker ◽  
A. K. M. Shamsuddin ◽  
R. Ara

Estimates of gene action for lodging related traits at Wheat Research Center during 1999-2002 in three crosses of wheat showed different genetic control of the traits among the crosses. For almost all traits, additive or dominance effects or both components were significant in either three- or six-parameter model, indicating that both additive and dominance gene effects were operative for different traits contributing to lodging resistance. Although duplicate type of epistasis was also observed for second internode breaking strength, plant height and spikes per plant and grain yield per plant once in different crosses, additive x additive epistasis along with additive gene action for the aforesaid traits would improve selection of the same in the segregating populations. The additive x dominance gene interaction for second internode length, diameter and wall thickness would be useful too for improvement of second internode breaking strength and consequently lodging resistance, as their inheritance and selection in segregating populations would be relatively easier than the traits controlled by completely non-additive genes. For duplicate type of epistasis biparental mating or recurrent selection followed by conventional selection is suggested.DOI: http://dx.doi.org/10.3329/bjpbg.v20i2.17031

Author(s):  
Andreea Daniela ONA ◽  
Ioan HAȘ ◽  
Ivan ILARIE ◽  
Voichița HAȘ ◽  
Nicolae TRITEAN ◽  
...  

In the last 40 years, pre-breeding works induced, in more and more centers of maize breeding, full-sib reciprocal recurrent selection programmes to identify some heterotic pairs which can be sources for obtaining performance inbred lines. The aim is to identify the heterotic pairs with the best results according to the yield potential of maize, the breaking and falling resistance, and the grains moisture at the harvesting time. The creation programme of A and B composite population started at ARDS Turda in 1985. Inside of A composite came the next inbred lines: B73, A632, M117, TC209, T291, being from the B SSS heterotic group, and inside of B composite came the inbred lines Mo17, C103, TC 208, T248, W633, appreciated by us or being related to Lancaster Sure Crop heterotic group. The experimentation was done in two orientation comparative cultures, each one with 49 variants, in 4 repetitions; the comparative culture was a balanced quadratic grid of 7x7 type. From each culture were chosen the first six variants, which were evaluated according to the next characters: production potential, breaking and falling resistance, grains moisture at harvest. The presented results are a part from the second cycle of full-sib reciprocal recurrent selection. Test crosses and self-pollinations were made on plants from the two composites which had two cobs; on the first cob from A Composite realised the cross with the corresponding plant from the B Composite, and from the plant panicle of the B Composite was collected pollen to pollinate the chosen plant from the A Composite. At the both plants from the crossing, the second cob was self-pollinated and kept in reserve until 2010, when the test crosses was experimented and were selected the pairs with the best results according to the above characters. Using the full-sib reciprocal recurrent selection, we can successfully harnessing, simultaneously, the additive and non-additive gene effects.


Author(s):  
Alireza Haghighi Hasanalideh ◽  
Mehrzad Allahgholipour ◽  
Ezatollah Farshadfar

This study was undertaken to assess the combining ability of 6 rice varieties, for viscosity parameters and determining gene action controlling Rapid Visco Analyser (RVA) characters. F2 progenies derived from a 6×6 half diallel mating design with their parents were grown in a randomized complete block design with three replications at the research farm of Rice Research Institute of Iran (RRII) in 2015. The diallel analysis by Griffing`s method indicated the involvement of additive and non-additive gene actions controlling RVA traits. For traits PV and FV RI18447-2 and IR50 were the best combiners for increasing and decreasing, respectively. Deylamani and IR50 were the best combiners for increasing and decreasing BV, respectively. Beside, due to more portion of non-additive gene action in controlling trait SV, The Gilaneh × RI18430-46, and Deylamani × RI18430-46 crosses were the best for increasing and decreasing SV, respectively. The high estimates of broad sense heritability and narrow sense heritability for BV and FV, indicated the importance of additive effects in expression of these traits. Therefore, selection base breeding methods will be useful to improve these traits and selection in the early generations could be done to fix the favourable genes. Low estimate of narrow sense heritability for SV revealed that non-additive gene effects play important role in controlling setback viscosity. So, hybrid base breeding methods will be useful to improve this trait.


2016 ◽  
Vol 8 (11) ◽  
pp. 138 ◽  
Author(s):  
Lawrence Owere ◽  
Pangirayi Tongoona ◽  
John Derera ◽  
Nelson Wanyera

<p>Blast disease is the most important biotic constraint to finger millet production. Therefore disease resistant varieties are required. However, there is limited information on combining ability for resistance and indeed other agronomic traits of the germplasm in Uganda. This study was carried out to estimate the combining ability and gene effects controlling blast disease resistance and selected agronomic traits in finger millet. Thirty six crosses were generated from a 9 × 9 half diallel mating design. The seed from the 36 F<sub>1</sub> crosses were advanced by selfing and the F<sub>2</sub> families and their parents were evaluated in three replications. General combining ability (GCA) for head blast resistance and the other agronomic traits were all highly significant (p ≤ 0.01), whereas specific combining ability (SCA) was highly significant for all traits except grain yield and grain mass head<sup>-1</sup>. On partitioning the mean sum of squares, the GCA values ranged from 31.65% to 53.05% for head blast incidence and severity respectively, and 36.18% to 77.22% for the other agronomic traits measured. Additive gene effects were found to be predominant for head blast severity, days to 50% flowering, grain yield, number of productive tillers plant<sup>-1</sup>, grain mass head<sup>-1</sup>, plant height and panicle length. Non-additive gene action was predominant for number of fingers head<sup>-1</sup>, finger width and panicle width. The parents which contributed towards high yield were <em>Seremi 2</em>, <em>Achaki</em>, <em>Otunduru</em>, <em>Bulo</em> and <em>Amumwari</em>. Generally, highly significant additive gene action implied that progress would be made through selection whereas non-additive gene action could slow selection progress and indicated selection in the later generations.</p>


2018 ◽  
Vol 43 (4) ◽  
pp. 599-609
Author(s):  
ANMS Karim ◽  
S Ahmed ◽  
AH Akhi ◽  
MZA Talukder ◽  
A Karim

Combining ability effects were estimated for grain yield and some other important agronomic traits of maize in a 7×7 diallel analysis excluding reciprocals. The variances for general combining ability (GCA) were found significant for yield, days to pollen shedding, days to silking and ear height while it was found non-significant for plant height and number of kernels/ear. Non-significant general combining ability (GCA) variance for plant height and number of kernels/ear indicates that these two traits were predominantly controlled by non- additive type of gene action. Specific combining ability (SCA) was significant for all the characters except yield and days to silking. Non-significant specific combining ability (SCA) variance for yield and days to silking suggests that these two traits were predominantly controlled by additive type of gene action. Both GCA and SCA variances were found significant only in days to pollen shedding and ear height indicated the presence of additive as well as non additive gene effects for controlling the traits. However, relative magnitude of these variances indicated that additive gene effects were more prominent for all the characters studied except days to silking. Parent BIL95 was the best general combiner for both high yield and number of kernels/ear and parent BML4 for dwarf plant type. Two crosses (BML4× BML36 and BIL114× BIL31) exhibited significant and positive SCA effects for grain yield involved low × average and average × average general combining parents. The range of heterosis expressed by different crosses for grain yield and days to silking was from -65.83 to 21.26 percent and -17.85 to 8.22 percent, respectively.. The better performing three crosses (BIL114×BIL31, BIL138×BIL95 and BIL31×BIL95) can be utilized for developing high yielding hybrid varieties as well as for exploiting hybrid vigour.Bangladesh J. Agril. Res. 43(4): 599-609, December 2018


2019 ◽  
Vol 4 (02) ◽  
pp. 175-181
Author(s):  
Amit Tomar ◽  
Ram Avtar ◽  
Mahak Singh

Genetic components analysis exhibited that both additive and dominance components were highly significant for almost all the traits indicating the role of both additive as well as non-additive gene action in controlling the expression of concerned traits. In general dominance component values were higher than that of additive component for all the traits. The estimates of average degree of dominance indicated presence of over-dominance for all the traits.


2016 ◽  
Vol 50 (3) ◽  
Author(s):  
R. S. Singh ◽  
M. N. Singh

The six generations (P<sub>1</sub>, P<sub>2</sub>, F<sub>1</sub>, F<sub>2</sub>, BC<sub>1</sub> and BC<sub>2</sub>) of twelve cross combinations of pigeonpea (<italic>Cajanus cajan</italic> L.) were studied during 2003-2006 for days to 50 % flowering, days to maturity, plant height, number of primary branches, number of secondary branches, pods per plant, pod length, number of seeds per pod, 100-seed weight, harvest index and seed yield per plant. The means of six generations were subjected to detect main gene effects and interactions. The estimates of six parameter model revealed that both additive and dominant gene effects were important in all the crosses for almost all the traits. However, the relative contribution of dominant gene effects was much higher than additive gene effects for plant height, pods per plant and seed yield per plant. Higher frequency of duplicate type of epistasis also confirms the prevalence of dominance gene effects for above traits except for seed yield per plant.


Author(s):  
G. Thamodharan ◽  
A. Ramalingam ◽  
S. Geetha

An experiment was carried out in blackgram using line x tester mating design to estimate the gca effect of parents (six lines and five testers) and sca effect of 30 hybrids for yield and its traits. Estimates of gca and sca variances, degree of dominance, predictability ratio and narrow sense heritability revealed that only three trais viz., pods per plant, seeds per pod and single plant yield were controlled by additive gene action and hence showed high narrow sense heritability. Magnitude of non-additive gene action was higher than the additive gene action for traits like plant height, days to 50% flowering, cluster per plant, 100 seed weight, days to maturity, branches per plant and pod length. Three parents ‘MDU1, ADT3 and LBG-752 were the best combiners and three crosses ‘MDU1 x VBN (Bg) 6, LBG-752 x VBN (Bg) 6, LBG-752 x Mash-114 showed high per se performance and significant positive sca for yield. For exploiting both additive and non-additive gene action recurrent selection to be followed to improve yield in blackgram.


2010 ◽  
Vol 62 (1) ◽  
pp. 3-16 ◽  
Author(s):  
Yuksel Bolek ◽  
Hatice Cokkizgin ◽  
Adem Bardak

Combining ability and heterosis for fiber quality traits in cotton Combining ability analysis and heterosis for cotton fiber quality traits were studied in a set of diallel crosses involving eight cotton (Gossypium sp.) genotypes. Randomized complete block design was used to test 56 F1 and 8 parents for fiber quality traits; length (Len), strength (Str), micronaire (Mic), uniformity (Unf), elongation (Elg), spinning consistency index (Sci) and short fiber index (Sfi). Analysis revealed significant general combining ability (GCA) and specific combining ability (SCA) effects for all the traits and additive gene effects were important in the inheritance of the traits. Giza-45 had the highest GCA effects for Len, Sci, Unf and Elg while Is-4 had the highest Str value. Mic and Sfi values were lowest for Askabat-100 and Giza-45, respectively. The cross Cukurova-1518 × 108-F and Nazilli-84S × Askabat-100 had the lowest SCA effects for Mic and Sfi, respectively. The highest values for Len (Askabat-100 × 108-F), for Str (Acala Prema × 108-F), for Sci (Is-4 × Giza-45), for Unf (Stoneville-453 × Askabat-100) and for Elg (108-F × Is-4) were also obtained. Hybridizations among Askabat-100 × Nazilli-84S, Is-4 × Giza-45, Askabat-100 × Stoneville-453, Askabat-100 × Giza-45, Is-4 × 108F, Giza-45 × 108F, Giza-45 × Acala Prema, Nazilli-84S × Giza-45, Is-4 × Nazilli-84S and Acala Prema × Askabat-100 crosses yielded the best heterosis and heterobeltiosis values. Aforementioned parents and crosses could be utilized for further selection of high fiber quality and applying 3-way crosses or modified backcross or recurrent selection to genotypes having good combining ability would improve fiber quality.


1968 ◽  
Vol 12 (3) ◽  
pp. 267-283 ◽  
Author(s):  
R. Frankham ◽  
L. P. Jones ◽  
J. S. F. Barker

1. In order to determine the nature of the genetic variation causing the response to selection in our lines (Jones et al. 1968), various analyses were performed.2. There was no consistent change in heritability, estimated from half-sib correlation or from the phenotypic correlation between the bristle numbers of two abdominal segments, after 10 to 20 generations of selection.3. Realized heritabilities over the 10 generations subsequent to the heritability estimations were less than in the early generations but bore little relationship to the estimated values.4. Six lines contained recessive lethals with appreciable effects on bristle number as indicated by high variances, large regression on relaxation and large response to reverse selection.5. Reverse selection lines taken from the main lines at generation 40 indicated that genetic variation was still present in almost all of the lines. Only one line failed to respond to further forward or to reverse selection.6. The three highest lines were crossed in pairs and reselected. Two of the three possible crosses gave further response, exceeding the higher parent after one and three generations, but the other cross failed to pass the highest parent line.7. A combination of large gene effects, linkage, and gene interaction effects have been suggested as the cause of irregularities in the response of the lines. It has not been possible to determine the relative importance of these effects.


2021 ◽  
Author(s):  
Divya Chaudhary ◽  
Swati ◽  
Kuldeep Nagar ◽  
Richa Dhyani

Abstract Experiments were conducted to study the genetics and combining ability for yield and its attributes under Irrigated (E1) and Rainfed (E2) conditions using F1 hybrids derived from Line X Tester mating design by crossing eleven lines with three testers. Significant differences were observed among all the genotypes for all the traits in both E1 and E2 environments as well as in pooled analysis. The σ2gca/σ2sca ratio indicated predominance of non-additive gene action for all the characters in both environments. Therefore, this component of variance can be utilize in breeding programme through exploitation of heterosis and the selection process for identification of superior plant type should be postponed to further generations like F4 or F5. VL3001 and KACHU*2//WHEAR/SOKOLL was identified as good general combiner in irrigated condition (E1) and in rainfed condition (E2), respectively for maximum number of traits. Parent VL3001 was also identified as good general combiner for maximum number of traits in case of pooled analysis. Cross BECARD/KACHU × WH1080, BOW/VEE/5/ND/VG9144//KAL/BBB/YACO/4/CHIL/6/CASKOR/3/… × WH1080 and C306 × WH1142 was identified as good specific combination for maximum number of traits in irrigated condition (E1), rainfed condition (E2) and in pooled analysis, respectively.


Sign in / Sign up

Export Citation Format

Share Document