scholarly journals Two Mode DPM Equipped with an Automatic Leak Test Using MPX5050GP and MPXV4115VC6U Sensors

Author(s):  
Fita Florensa Rooswita ◽  
Triana Rahmawati ◽  
Syaifudin Syaifudin

The calibration process aims to guarantee measurement results in accordance with established standards. One of the tools used for pressure calibration is the Digital Presure Meter, which is the function of this tool to measure pressure on the Sphygmomanometer and Suction Pump or other tools that use pressure parameters for measurement. This module uses the Arduino system as a control and processing of analog data into digital data in order to condition the output of the MPX5050GP sensor for positive pressure and MPXV4115VC6U sensor for vacum pressure, this module uses a 4x20 LCD character display and there is a selection of mmHg and Kpa units with fluctuating resolution 0.25. Also in this module there is also an automatic leak test feature for the Sphygmomanometer, the measurement results obtained an average error of 7.3 mmHg for sphymomanometer measurements, and for suction pumps less than 1.5 Kpa. From these results it was concluded that this module can be used for the measurement of tools that use positive pressure and negative pressure.

Author(s):  
Fita Florensa Rooswita ◽  
Triana Rahmawati ◽  
Syaifudin Syaifudin

The calibration process aims to guarantee measurement results following established standards. The purpose of this study is to design an automatic leak test for digital pressure meter in which the function of this device is to measure pressure on the Sphygmomanometer and Suction Pump or other devices that use pressure parameters for measurement. This module uses the Arduino system as control and processing of analog data into digital data to condition the output of the MPX5050GP sensor for positive pressure and MPXV4115VC6U sensor for vacuum pressure, this module uses a 4x20 LCD character display and there is a selection of mmHg and Kpa units with fluctuating resolution 0.25. Also, in this module there is an automatic leak test feature for the Sphygmomanometer, the measurement results obtained an average error of 7.3 mmHg for sphygmomanometer measurements, and for suction pumps less than 1.5 Kpa. From these results, it was concluded that this module can be used for the measurement of devices that use positive pressure and negative pressure


Author(s):  
Abdul Cholid ◽  
Her Gumiwang Ariswati ◽  
Syaifudin Syaifudin

Calibration is a technical activity which consists of the determination, the determination of one or more properties or characteristics of a product, process or service in accordance with a special procedure has been set. The purpose of which is to ensure the calibration measurement results in accordance with national and international standards. The tools used for the calibration of pressure Digital Pressure Meter. This tool is used to measure the pressure and suction pump spygnomanometer or other devices that use parameters for measuring pressure. This module manufacturing system using Arduino system as a controller and as processing analog data into digital data of the sensor MPX5100GP and MPXV4115V using analog signal conditioning circuit and displayed on the LCD Touchscreen with 2 modes of measurement that is positive pressure and vacuum pressure with pressures ranging from 0-300 mmHg for positive pressure and 0 –(-400)  mmHg to vacuum pressure. There are also  DHT22 sensor, As a detector for temperature and humidity for use in the work method in the calibration process. Based on a stress test generated and using comparators Digital Pressure Meter 2 plus brand fluke, this tool has an error value of 0 to 0.58% and has a value increment or correction value of 0 - 3. It can be concluded that the DPM DUA MODE this deserves to be used.


1958 ◽  
Vol 35 (4) ◽  
pp. 807-823 ◽  
Author(s):  
G. M. HUGHES

1. A study has been made of the respiratory movements of three species of freshwater fish. The time course of pressure changes in the buccal and opercular cavities was recorded and movements of the mouth and operculum plotted from ciné films taken simultaneously. 2. Opening and closing of the mouth precede respectively abduction and adduction of the operculum by about one-fifth of a cycle. 3. The most prominent part of the buccal pressure curve is a positive pressure associated with mouth closing. The size of a negative pressure as the mouth opens is small in the trout but may be relatively large in the tench. 4. Abduction of the operculum produces a marked negative pressure in the opercular cavity of all three species and there is a slight positive pressure during its adduction. 5. The respiratory system is divided into a buccal and two opercular cavities and the concept of gill resistances separating them is introduced. 6. The respiratory cycle is made up of four phases which succeed one another. These are: phase (1) opercular suction pump predominant; phase (2) transition with a reduction in differential pressure between the buccal and opercular cavities; phase (3) buccal pressure pump predominant; and phase (4) transition with reversal of differential pressure. 7. With the exception of phase (4), which occupies only about one-tenth of a cycle, the pressure in the buccal cavity exceeds that in the opercular cavity throughout the cycle. It is therefore concluded that water will flow across the gills for almost the entire cycle but may reverse for this brief period. The quantitative relationship between the pressures and the volume of water flowing across the gills during different parts of the cycle will depend upon the properties of the gill resistances.


Author(s):  
Bedjo Utomo ◽  
I Dewa Gede Hariwisana ◽  
Shubhrojit Misra

Calibration is a technical activity which consists of determining one or more properties and characteristics of a product, process or service according to a predetermined special procedure. The purpose of calibration is to ensure measurement results comply with national and international standards. The purpose of this study is to design two mode digital pressure meter (DPM) device equipped with a thermo-hygrometer and pressure in which the design is completed with a selection mode to determine the positive and negative pressure (vacuum) using MPX 5050GP sensor as a positive pressure sensor.  In this design DHT 22 sensors is used to measure the humidity and temperature.  To test the leak test this device is also equipped with timer. This design uses a 2.4 inch Nextion TFT LCD screen to display data. Data analysis was performed by comparing modul with standard tools. In the measurement process, Mercury tensimeter was carried out 6 times the data and the smallest results were 0 mmHg on the module and 0 mmHg on the standard tool and the largest was 298.0 mmHg on the module and 300 mmHg on the standard tool. Data were collected in a room with a temperature of 31̊C and humidity of 87%. Finally, this design is applicable for daily used for electromedical engineer to calibrate the sphygmomanometer in the hospitals


1988 ◽  
Vol 97 (2) ◽  
pp. 199-206 ◽  
Author(s):  
Yehuda Finkelstein ◽  
Yuval Zohar ◽  
Yoav P. Talmi ◽  
Nelu Laurian

The Toynbee maneuver, swallowing when the nose is obstructed, leads in most cases to pressure changes in one or both middle ears, resulting in a sensation of fullness. Since first described, many varying and contradictory comments have been reported in the literature concerning the type and amount of pressure changes both in the nasopharynx and in the middle ear. In our study, the pressure changes were determined by catheters placed into the nasopharynx and repeated tympanometric measurements. New information concerning the rapid pressure variations in the nasopharynx and middle ear during deglutition with an obstructed nose was obtained. Typical individual nasopharyngeal pressure change patterns were recorded, ranging from a maximal positive pressure of + 450 to a negative pressure as low as −320 mm H2O.


2021 ◽  
Author(s):  
Jamal Ahmadov

Abstract The Tuscaloosa Marine Shale (TMS) formation is a clay- and liquid-rich emerging shale play across central Louisiana and southwest Mississippi with recoverable resources of 1.5 billion barrels of oil and 4.6 trillion cubic feet of gas. The formation poses numerous challenges due to its high average clay content (50 wt%) and rapidly changing mineralogy, making the selection of fracturing candidates a difficult task. While brittleness plays an important role in screening potential intervals for hydraulic fracturing, typical brittleness estimation methods require the use of geomechanical and mineralogical properties from costly laboratory tests. Machine Learning (ML) can be employed to generate synthetic brittleness logs and therefore, may serve as an inexpensive and fast alternative to the current techniques. In this paper, we propose the use of machine learning to predict the brittleness index of Tuscaloosa Marine Shale from conventional well logs. We trained ML models on a dataset containing conventional and brittleness index logs from 8 wells. The latter were estimated either from geomechanical logs or log-derived mineralogy. Moreover, to ensure mechanical data reliability, dynamic-to-static conversion ratios were applied to Young's modulus and Poisson's ratio. The predictor features included neutron porosity, density and compressional slowness logs to account for the petrophysical and mineralogical character of TMS. The brittleness index was predicted using algorithms such as Linear, Ridge and Lasso Regression, K-Nearest Neighbors, Support Vector Machine (SVM), Decision Tree, Random Forest, AdaBoost and Gradient Boosting. Models were shortlisted based on the Root Mean Square Error (RMSE) value and fine-tuned using the Grid Search method with a specific set of hyperparameters for each model. Overall, Gradient Boosting and Random Forest outperformed other algorithms and showed an average error reduction of 5 %, a normalized RMSE of 0.06 and a R-squared value of 0.89. The Gradient Boosting was chosen to evaluate the test set and successfully predicted the brittleness index with a normalized RMSE of 0.07 and R-squared value of 0.83. This paper presents the practical use of machine learning to evaluate brittleness in a cost and time effective manner and can further provide valuable insights into the optimization of completion in TMS. The proposed ML model can be used as a tool for initial screening of fracturing candidates and selection of fracturing intervals in other clay-rich and heterogeneous shale formations.


Author(s):  
Bing Yi ◽  
Renkai Sun ◽  
Long Liu ◽  
Yongfeng Song ◽  
Yinggui Zhang

Abstract It is a challenge for the dynamic inspection of railway route for freight car transporting cargo that out-of-gauge. One possible way is using the inspection frame installed in the inspection train to simulate the whole procedure for cargo transportation, which costs a lot of manpower and material resources as well as time. To overcome the above problem, this paper proposes an augmented reality (AR) based dynamic inspection method for visualized railway routing of freight car with out-of-gauge. First, the envelope model of the dynamic moving train with out-of-gauge cargo is generated by using the orbital spectrum of the railway, and the envelope model is matched with a piece of homemade calibration equipment located on the position of the railway that needs to be inspected. Then, the structure from motion (SFM) algorithm is used to reconstruct the environment where the virtual envelope model occludes the buildings or equipment along the railway. Finally, the distance function is adopted to calculate the distance between the obstacle and the envelope of the freight car with out-of-gauge, determining whether the freight car can pass a certain line. The experimental results show that the proposed method performs well for the route selection of out-of-gauge cargo transportation with low cost, high precision, and high efficiency. Moreover, the digital data of the environments along the railway and the envelope of the freight car can be reused, which will increase the digitalization and intelligence for route selection of out-of-gauge cargo transportation.


1987 ◽  
Vol 63 (2) ◽  
pp. 707-712 ◽  
Author(s):  
V. Soland ◽  
G. Brock ◽  
M. King

In our previous study, we investigated the relationship between mucus rheology, depth of mucus layer, and clearance by simulated cough. The purpose of the present study was to examine the effect of airway wall flexibility on the clearance of mucuslike gels. Transient airflows similar to cough were generated by both positive and negative pressure, the latter to mimic the dynamic compression that occurs during real cough. As in the previous study, the trachea was modeled as a trough of rectangular cross section with only the bottom lined with the mucus simulant. Clearance was followed by observing the displacement of marker particles. Since cough clearance is intimately related to wave formation in the mucus blanket, we hypothesized that clearance might be impeded if the wave formation occurred simultaneously in the wall and its lining layer. Thus, in one set of experiments the bottom rigid surface of the model trachea was replaced with a frame over which a flexible membrane could be drawn, whereas in the other set the rigid top was replaced by the frame. We also examined the effect of negative-pressure cough in excised canine tracheae, comparing the case where the tracheal membrane was free to deform vs. the case where it was secured. For the rigid-walled model, clearance by positive or negative pressure, with matched flow pattern, was the same. With the mucus simulant lining the flexible bottom surface, clearance increased with increasing membrane flexibility for negative-pressure cough and decreased for positive-pressure cough.(ABSTRACT TRUNCATED AT 250 WORDS)


1976 ◽  
Vol 41 (2) ◽  
pp. 252-255 ◽  
Author(s):  
J. E. Remmers ◽  
H. Gautier

We have constructed an electronically controlled respirator from three commercially available components: a positive-pressure ventilator, a recorder pen motor, and a differential amplifier. Using negative feedback derived from a tracheal pressure signal, the instrument functions as a servo respirator which provides precise control of tracheal pressure. The system's power and response characteristics are well suited for ventilation of anesthetized cats and dogs. The servo respirator can be used as an externallycontrolled respiratory pump which provides flexibility in selection of the parameters of the ventilatory cycle. Alternatively, it can function as a “demand” respirator which generates transthoracic pressure proportional to efferent respiratory discharge.


Sign in / Sign up

Export Citation Format

Share Document