scholarly journals Transformation of coal-fired power plants on steam-gas power plants

Paliva ◽  
2021 ◽  
pp. 102-106
Author(s):  
Ondřej Hlaváček ◽  
Tomáš Hlinčík

Currently in the EU there are bigger tendencies to reduce emissions of carbon dioxide and phasing out of coal mining and combustion. There are some possibilities to transform current coal-fired power plant to steam-gas one. The advantages of steam-gas power plant are lower amount of emissions and higher efficiency unlike coal-fired one and stability of energy production unlike wind and solar one. The article focuses on principle, description and ad-vantages of steam-gas power plant. It also mentions and compares methods of transformation current coal-fired power plant to steam-gas one. Finally, the possible expansion of these power plant in the Czech Republic is discussed, with regard to economic aspects and EU cli-mate change policy.

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 900
Author(s):  
Ioanna Skoulidou ◽  
Maria-Elissavet Koukouli ◽  
Arjo Segers ◽  
Astrid Manders ◽  
Dimitris Balis ◽  
...  

In this work, we investigate the ability of a data assimilation technique and space-borne observations to quantify and monitor changes in nitrogen oxides (NOx) emissions over Northwestern Greece for the summers of 2018 and 2019. In this region, four lignite-burning power plants are located. The data assimilation technique, based on the Ensemble Kalman Filter method, is employed to combine space-borne atmospheric observations from the high spatial resolution Sentinel-5 Precursor (S5P) Tropospheric Monitoring Instrument (TROPOMI) and simulations using the LOTOS-EUROS Chemical Transport model. The Copernicus Atmosphere Monitoring Service-Regional European emissions (CAMS-REG, version 4.2) inventory based on the year 2015 is used as the a priori emissions in the simulations. Surface measurements of nitrogen dioxide (NO2) from air quality stations operating in the region are compared with the model surface NO2 output using either the a priori (base run) or the a posteriori (assimilated run) NOx emissions. Relative to the a priori emissions, the assimilation suggests a strong decrease in concentrations for the station located near the largest power plant, by 80% in 2019 and by 67% in 2018. Concerning the estimated annual a posteriori NOx emissions, it was found that, for the pixels hosting the two largest power plants, the assimilated run results in emissions decreased by ~40–50% for 2018 compared to 2015, whereas a larger decrease, of ~70% for both power plants, was found for 2019, after assimilating the space-born observations. For the same power plants, the European Pollutant Release and Transfer Register (E-PRTR) reports decreased emissions in 2018 and 2019 compared to 2015 (−35% and −38% in 2018, −62% and −72% in 2019), in good agreement with the estimated emissions. We further compare the a posteriori emissions to the reported energy production of the power plants during the summer of 2018 and 2019. Mean decreases of about −35% and−63% in NOx emissions are estimated for the two larger power plants in summer of 2018 and 2019, respectively, which are supported by similar decreases in the reported energy production of the power plants (~−30% and −70%, respectively).


Resources ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 84
Author(s):  
Margarida Casau ◽  
Diana C. M. Cancela ◽  
João C. O. Matias ◽  
Marta Ferreira Dias ◽  
Leonel J. R. Nunes

Energy consumption is associated with economic growth, but it comes with a toll regarding the environment. Renewable energies can be considered substitutes for fossil fuels and may contribute to reducing the environmental degradation that the world is presently facing. With this research, we aimed to offer a broader view of the state-of-the-art in this field, particularly regarding coal and biomass. The main objective is to present a viable and sustainable solution for the coal power plants still in operation, using as a hypothetical example the Pego Power Plant, the last operating coal fueled power plant in Portugal. After the characterization of land use and energy production in Portugal, and more particularly in the Médio Tejo region, where the power plant is located, the availability of biomass was assessed and it was concluded that the volume of biomass needed to keep the Pego power plant working exclusively with biomass is much lower than the yearly growth volume of biomass in the region, which means that this transition would be viable in a sustainable way. This path is aligned with policies to fight climate change, since the use of biomass for energy is characterized by low levels of GHGs emissions when compared to coal. The risk of rural fires would be reduced, and the economic and social impact for this region would be positive.


Author(s):  
Radin Diana R. Ahmad ◽  
Tiong Sieh Kiong ◽  
Sazalina Zakaria ◽  
Ahmad Rosly Abbas ◽  
Chen Chai Phing ◽  
...  

Three different power plants have been assessed in terms of energy conversion efficiency and GHGs emission rate. The power plants are coal power plant, natural gas power plant and biomass power plant. The assessments are made by collecting fuels consumption data and generated electricity data of each power plant. In addition to the data collection, observation on operational practices have also been carried out. The energy conversion efficiency and the GHGs emission rate for all power plants are recorded to be lower than the typical values proposed by the literature. The biomass power plant recorded the lowest energy conversion efficiency at 6.47 %. Meanwhile, the natural gas power plant utilizing the combined cycle gas turbine technology recorded the highest overall energy conversion efficiency at 48.35 % and rated to emit GHGs at 0.32 kg CO2e per kWh.


2021 ◽  
Vol 2 ◽  
pp. 21-25
Author(s):  
Vladimir Baranovsky ◽  
Maxim Lipatov

A wide range of efficient gas turbine engines has been developed at UEC NPO Saturn, Russia. Those engines can be successfully used for developing a marine steam-gas semi-closed cycle power plant to compensate peak loads on ships and vessels. This compact steam-gas power plant will demonstrate high efficiency which doesn’t change significantly depending on the load when compared to conventional steam-gas power plants. Also, this solution can possibly change the diesel engine prevalence among marine power plants.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Majid Sarmadi ◽  
Parvin Nassiri ◽  
Fatemeh Razavian ◽  
Behnoush Khoshmanesh

: The noise pollution is among the major challenges of installing the equipment and development of industries. Controlling produced noise in small power plants is a necessity for its development. The present study was conducted to predict the reduction of exhaust noise pollution in a 25 MW gas power plant using the synthesized aluminum foam in a gas power plant under the construction. The noise pollution was measured in a similar gas power plant to predict noise sources in the Tarasht gas power plant. One centimeter thick aluminum foam was synthesized with an average size of about 300 - 500 µm and a porosity of 90%. The impedance tube was used to determine the sound absorption coefficient of aluminum foam. Then, the sound pressure level was predicted by ANSYS software before and after applying aluminum foam in a simulated environment on the exhaust duct wall. Results showed that with the 10 cm of thick insulation layer includes punctuating stainless steel plates, refractory fabric, and closed-cell aluminum foam at high frequency, at least an 8 dB reduction in the noise pollution was obtained the exhaust duct wall compared to the duct wall without the aluminum foam. Aluminum foam can be used as a suitable sound insulator in the power plant industry. Furthermore, it has various advantages over other insulators, such as the resistance to moisture, heat, and vibration attenuation due to noise, proper high rigidity at a low weight, and most importantly, less environmental pollution.


2020 ◽  
Vol 21 (4) ◽  
pp. 302-308
Author(s):  
Irina M. Kirpichnikova

The description of the state of power engineering in Russia in the pre-revolutionary period, data on the production of electricity per capita are presented. A brief history of the creation of a commission for the development of the State Electrification Plan of Russia (GOELRO plan) and some results of its implementation are provided. The construction of the first large power plant in the South Urals, built according to the GOELRO plan, - Chelyabinsk State District Power Plant, which at that time was of great importance for the development of the region's industry and remains one of the most powerful power plants at the present time, is described. The possibilities of using renewable energy sources, in particular local hydropower resources for energy production, are disclosed. The problems of the Porozhskaya Hydropower Plant - the oldest and unique hydroelectric power plant in the Urals are designated, the characteristics of small hydropower plants in the Southern Urals are given, the prospects for using the hydropower potential of the Chelyabinsk region are revealed. The potential of solar and wind energy is discussed, the characteristics and features of solar power plants in the Urals and wind power plants with a vertical axis of rotation, developed at the South Ural State University, are specified. It is established that biomass as a resource for energy production has good prospects for use, but due to climatic conditions, this direction has not yet been developed. It is shown that small and distributed energy is still an important component in the general energy of the region and the country.


Author(s):  
Stefano Ubertini ◽  
Umberto Desideri

The market for photovoltaic is rapidly expanding and there are some large utility PV power plants, thousands of residential systems, and tens of thousands of remote power systems in use. Even if photovoltaic is a technology that has already demonstrated its effectiveness and holds great promise in electrical generation, the costs are still too high to guarantee a commercial competitivity. This paper presents the performance results of a 15 kWp photovoltaic power plant installed on the roof of a high school in central Italy. The system consists of 220 modules for a total of 22 arrays, which are connected to inverters to allow conventional appliances to be powered by photovoltaic electricity. The PV plant is remotely controlled and data on sun radiation, ambient temperature, modules temperature and power production are continuously acquired by a PC. The measured power plant performances during the year are presented in this paper.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 795 ◽  
Author(s):  
Martin Libra ◽  
Milan Daneček ◽  
Jan Lešetický ◽  
Vladislav Poulek ◽  
Jan Sedláček ◽  
...  

Drone infrared camera monitoring of photovoltaic (PV) power plants allows us to quickly see a large area and to find the worst defects in PV panels, namely cracked PV cells with broken contacts. Roofs are suitable for the integration of PV power plants into buildings. The power plant at the Czech University of Life Sciences in Prague, which was monitored by this method, does not show any significant defects, and the produced electric energy exceeds the expected values. On the contrary, the PV power plant in Ladná has visible defects, and the data monitoring system Solarmon-2.0 also indicates defects. Our newly developed data monitoring system Solarmon-2.0 has been successfully used in 65 PV power plants in the Czech Republic and in many PV power plants throughout the world. Data are archived and interpreted in our dispatch area at the Czech University of Life Sciences in Prague. The monitoring system can report possible failure(s) if the measured amount of energy differs from the expected value(s). The relation of the measured values of PV power to the PV panel temperature is justified, which is consistent with the physical theory of semiconductors.


2019 ◽  
Vol 14 (3) ◽  
pp. 505-526 ◽  
Author(s):  
Nedjma Abdelhafidi ◽  
Nour El Islam Bachari ◽  
Zohra Abdelhafidi ◽  
Ali Cheknane ◽  
Abdelmotaleb Mokhnache ◽  
...  

Purpose Integrated solar combined cycle (ISCC) using parabolic trough collector (PTC) technology is a new power plant that has been installed in few countries to benefit from the use of hybrid solar-gas systems. The purpose of this paper is to investigate the challenges in modeling the thermal output of the hybrid solar-gas power plant and to analyze the factors that influence them. Design/methodology/approach To validate the proposal, a study was conducted on a test stand in situ and based on the statistical analysis of meteorological data of the year 2017. Such data have been brought from Abener hybrid solar-gas central of Hassi R’mel and used as an input of our model. Findings The proposal made by the authors has been simulated using MATLAB environment. The simulation results show that the net solar electricity reaches 18 per cent in June, 15 per cent in March and September, while it cannot exceed 8 per cent in December. Moreover, it shows that the power plant responses sensibly to solar energy, where the electricity output increases accordingly to the solar radiation increase. This increase in efficiency results in better economic utilization of the solar PTC equipment in such kind of hybrid solar-gas power plant. Practical implications The obtained results would be expected to provide the possibility for designing other power plants in Algeria when such conditions are met (high DNI, low wind speed, water and natural-gas availability). Originality/value This paper presents a new model able to predict the thermal solar energy and the net solar-electricity efficiency of such kind solar hybrid power plant.


Sign in / Sign up

Export Citation Format

Share Document