scholarly journals Fault Diagnosis of Gearbox using Machine Learning and Deep Learning Techniques

Gearbox is an important component used for automobiles, machine tools, industries etc. Failure of any component in gearbox will cause huge maintenance cost and production loss. Failure should be detected as early as possible in order to avoid sudden breakdown which even cause catastrophic failures. Vibration signals are used for machine condition monitoring for predictive maintenance and efficiently predicts fault in the gearbox. In this paper signals from vibration is used for diagnosis of gearbox fault. The experiment uses four different conditions of gearbox in four different load conditions. Then statistical feature extraction is done and obtained result is given to Decision Tree, Support Vector Machine (SVM), Convolutional Neural Network (CNN) and Deep Neural Network (DNN) for fault diagnosis. The efficiency of these four techniques is compared and shows that machine learning is better than deep learning in gearbox fault diagnosis.

2021 ◽  
Vol 9 ◽  
Author(s):  
Ashwini K ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang

Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, it automatically extracts and selects the most important features. For this, it requires an enormous amount of data for effective classification. This work mainly discriminates the neonatal cries into pain, hunger, and sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional neural network (DCNN) technique takes the spectrogram images for input. The features are obtained from the convolutional neural network and are passed to the support vector machine (SVM) classifier. Machine learning technique classifies neonatal cries. This work combines the advantages of machine learning and deep learning techniques to get the best results even with a moderate number of data samples. The experimental result shows that CNN-based feature extraction and SVM classifier provides promising results. While comparing the SVM-based kernel techniques, namely radial basis function (RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of kernel-based infant cry classification system provides 88.89% accuracy.


2020 ◽  
Vol 17 (4) ◽  
pp. 1925-1930
Author(s):  
Ambeshwar Kumar ◽  
R. Manikandan ◽  
Robbi Rahim

It’s a new era technology in the field of medical engineering giving awareness about the various healthcare features. Deep learning is a part of machine learning, it is capable of handling high dimensional data and is efficient in concentrating on the right features. Tumor is an unbelievably complex disease: a multifaceted cell has more than hundred billion cells; each cell acquires mutation exclusively. Detection of tumor particles in experiment is easily done by MRI or CT. Brain tumors can also be detected by MRI, however, deep learning techniques give a better approach to segment the brain tumor images. Deep Learning models are imprecisely encouraged by information handling and communication designs in biological nervous system. Classification plays an significant role in brain tumor detection. Neural network is creating a well-organized rule for classification. To accomplish medical image data, neural network is trained to use the Convolution algorithm. Multilayer perceptron is intended for identification of a image. In this study article, the brain images are categorized into two types: normal and abnormal. This article emphasize the importance of classification and feature selection approach for predicting the brain tumor. This classification is done by machine learning techniques like Artificial Neural Networks, Support Vector Machine and Deep Neural Network. It could be noted that more than one technique can be applied for the segmentation of tumor. The several samples of brain tumor images are classified using deep learning algorithms, convolution neural network and multi-layer perceptron.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5150
Author(s):  
Shiza Mushtaq ◽  
M. M. Manjurul Islam ◽  
Muhammad Sohaib

This paper presents a comprehensive review of the developments made in rotating bearing fault diagnosis, a crucial component of a rotatory machine, during the past decade. A data-driven fault diagnosis framework consists of data acquisition, feature extraction/feature learning, and decision making based on shallow/deep learning algorithms. In this review paper, various signal processing techniques, classical machine learning approaches, and deep learning algorithms used for bearing fault diagnosis have been discussed. Moreover, highlights of the available public datasets that have been widely used in bearing fault diagnosis experiments, such as Case Western Reserve University (CWRU), Paderborn University Bearing, PRONOSTIA, and Intelligent Maintenance Systems (IMS), are discussed in this paper. A comparison of machine learning techniques, such as support vector machines, k-nearest neighbors, artificial neural networks, etc., deep learning algorithms such as a deep convolutional network (CNN), auto-encoder-based deep neural network (AE-DNN), deep belief network (DBN), deep recurrent neural network (RNN), and other deep learning methods that have been utilized for the diagnosis of rotary machines bearing fault, is presented.


Vibration ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 341-356
Author(s):  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Various techniques have been developed to detect railway defects. One of the popular techniques is machine learning. This unprecedented study applies deep learning, which is a branch of machine learning techniques, to detect and evaluate the severity of rail combined defects. The combined defects in the study are settlement and dipped joint. Features used to detect and evaluate the severity of combined defects are axle box accelerations simulated using a verified rolling stock dynamic behavior simulation called D-Track. A total of 1650 simulations are run to generate numerical data. Deep learning techniques used in the study are deep neural network (DNN), convolutional neural network (CNN), and recurrent neural network (RNN). Simulated data are used in two ways: simplified data and raw data. Simplified data are used to develop the DNN model, while raw data are used to develop the CNN and RNN model. For simplified data, features are extracted from raw data, which are the weight of rolling stock, the speed of rolling stock, and three peak and bottom accelerations from two wheels of rolling stock. In total, there are 14 features used as simplified data for developing the DNN model. For raw data, time-domain accelerations are used directly to develop the CNN and RNN models without processing and data extraction. Hyperparameter tuning is performed to ensure that the performance of each model is optimized. Grid search is used for performing hyperparameter tuning. To detect the combined defects, the study proposes two approaches. The first approach uses one model to detect settlement and dipped joint, and the second approach uses two models to detect settlement and dipped joint separately. The results show that the CNN models of both approaches provide the same accuracy of 99%, so one model is good enough to detect settlement and dipped joint. To evaluate the severity of the combined defects, the study applies classification and regression concepts. Classification is used to evaluate the severity by categorizing defects into light, medium, and severe classes, and regression is used to estimate the size of defects. From the study, the CNN model is suitable for evaluating dipped joint severity with an accuracy of 84% and mean absolute error (MAE) of 1.25 mm, and the RNN model is suitable for evaluating settlement severity with an accuracy of 99% and mean absolute error (MAE) of 1.58 mm.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1694
Author(s):  
Mathew Ashik ◽  
A. Jyothish ◽  
S. Anandaram ◽  
P. Vinod ◽  
Francesco Mercaldo ◽  
...  

Malware is one of the most significant threats in today’s computing world since the number of websites distributing malware is increasing at a rapid rate. Malware analysis and prevention methods are increasingly becoming necessary for computer systems connected to the Internet. This software exploits the system’s vulnerabilities to steal valuable information without the user’s knowledge, and stealthily send it to remote servers controlled by attackers. Traditionally, anti-malware products use signatures for detecting known malware. However, the signature-based method does not scale in detecting obfuscated and packed malware. Considering that the cause of a problem is often best understood by studying the structural aspects of a program like the mnemonics, instruction opcode, API Call, etc. In this paper, we investigate the relevance of the features of unpacked malicious and benign executables like mnemonics, instruction opcodes, and API to identify a feature that classifies the executable. Prominent features are extracted using Minimum Redundancy and Maximum Relevance (mRMR) and Analysis of Variance (ANOVA). Experiments were conducted on four datasets using machine learning and deep learning approaches such as Support Vector Machine (SVM), Naïve Bayes, J48, Random Forest (RF), and XGBoost. In addition, we also evaluate the performance of the collection of deep neural networks like Deep Dense network, One-Dimensional Convolutional Neural Network (1D-CNN), and CNN-LSTM in classifying unknown samples, and we observed promising results using APIs and system calls. On combining APIs/system calls with static features, a marginal performance improvement was attained comparing models trained only on dynamic features. Moreover, to improve accuracy, we implemented our solution using distinct deep learning methods and demonstrated a fine-tuned deep neural network that resulted in an F1-score of 99.1% and 98.48% on Dataset-2 and Dataset-3, respectively.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3068
Author(s):  
Soumaya Dghim ◽  
Carlos M. Travieso-González ◽  
Radim Burget

The use of image processing tools, machine learning, and deep learning approaches has become very useful and robust in recent years. This paper introduces the detection of the Nosema disease, which is considered to be one of the most economically significant diseases today. This work shows a solution for recognizing and identifying Nosema cells between the other existing objects in the microscopic image. Two main strategies are examined. The first strategy uses image processing tools to extract the most valuable information and features from the dataset of microscopic images. Then, machine learning methods are applied, such as a neural network (ANN) and support vector machine (SVM) for detecting and classifying the Nosema disease cells. The second strategy explores deep learning and transfers learning. Several approaches were examined, including a convolutional neural network (CNN) classifier and several methods of transfer learning (AlexNet, VGG-16 and VGG-19), which were fine-tuned and applied to the object sub-images in order to identify the Nosema images from the other object images. The best accuracy was reached by the VGG-16 pre-trained neural network with 96.25%.


2011 ◽  
Vol 130-134 ◽  
pp. 2047-2050 ◽  
Author(s):  
Hong Chun Qu ◽  
Xie Bin Ding

SVM(Support Vector Machine) is a new artificial intelligence methodolgy, basing on structural risk mininization principle, which has better generalization than the traditional machine learning and SVM shows powerfulability in learning with limited samples. To solve the problem of lack of engine fault samples, FLS-SVM theory, an improved SVM, which is a method is applied. 10 common engine faults are trained and recognized in the paper.The simulated datas are generated from PW4000-94 engine influence coefficient matrix at cruise, and the results show that the diagnostic accuracy of FLS-SVM is better than LS-SVM.


Author(s):  
V Umarani ◽  
A Julian ◽  
J Deepa

Sentiment analysis has gained a lot of attention from researchers in the last year because it has been widely applied to a variety of application domains such as business, government, education, sports, tourism, biomedicine, and telecommunication services. Sentiment analysis is an automated computational method for studying or evaluating sentiments, feelings, and emotions expressed as comments, feedbacks, or critiques. The sentiment analysis process can be automated using machine learning techniques, which analyses text patterns faster. The supervised machine learning technique is the most used mechanism for sentiment analysis. The proposed work discusses the flow of sentiment analysis process and investigates the common supervised machine learning techniques such as multinomial naive bayes, Bernoulli naive bayes, logistic regression, support vector machine, random forest, K-nearest neighbor, decision tree, and deep learning techniques such as Long Short-Term Memory and Convolution Neural Network. The work examines such learning methods using standard data set and the experimental results of sentiment analysis demonstrate the performance of various classifiers taken in terms of the precision, recall, F1-score, RoC-Curve, accuracy, running time and k fold cross validation and helps in appreciating the novelty of the several deep learning techniques and also giving the user an overview of choosing the right technique for their application.


2021 ◽  
Author(s):  
Ghazaala Yasmin ◽  
ASIT KUMAR DAS ◽  
Janmenjoy Nayak ◽  
S Vimal ◽  
Soumi Dutta

Abstract Speech is one of the most delicate medium through which gender of the speakers can easily be identified. Though the related research has shown very good progress in machine learning but recently, deep learning has imparted a very good research area to explore the deficiency of gender discrimination using traditional machine learning techniques. In deep learning techniques, the speech features are automatically generated by the reinforcement learning from the raw data which have more discriminating power than the human generated features. But in some practical situations like gender recognition, it is observed that combination of both types of features sometimes provides comparatively better performance. In the proposed work, we have initially extracted and selected some informative and precise acoustic features relevant to gender recognition using entropy based information theory and Rough Set Theory (RST). Next, the audio speech signals are directly fed into the deep neural network model consists of Convolution Neural Network (CNN) and Gated Recurrent Unit network (GRUN) for extracting features useful for gender recognition. The RST selects precise and informative features, CNN extracts the locally encoded important features, and GRUN reduces the vanishing gradient and exploding gradient problems. Finally, a hybrid gender recognition system is developed combining both generated feature vectors. The developed model has been tested with five bench mark and a simulated dataset to evaluate its performance and it is observed that combined feature vector provides more effective gender recognition system specially when transgender is considered as a gender type together with male and female.


2018 ◽  
Vol 10 (1) ◽  
pp. 203 ◽  
Author(s):  
Xianming Dou ◽  
Yongguo Yang ◽  
Jinhui Luo

Approximating the complex nonlinear relationships that dominate the exchange of carbon dioxide fluxes between the biosphere and atmosphere is fundamentally important for addressing the issue of climate change. The progress of machine learning techniques has offered a number of useful tools for the scientific community aiming to gain new insights into the temporal and spatial variation of different carbon fluxes in terrestrial ecosystems. In this study, adaptive neuro-fuzzy inference system (ANFIS) and generalized regression neural network (GRNN) models were developed to predict the daily carbon fluxes in three boreal forest ecosystems based on eddy covariance (EC) measurements. Moreover, a comparison was made between the modeled values derived from these models and those of traditional artificial neural network (ANN) and support vector machine (SVM) models. These models were also compared with multiple linear regression (MLR). Several statistical indicators, including coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE), bias error (Bias) and root mean square error (RMSE) were utilized to evaluate the performance of the applied models. The results showed that the developed machine learning models were able to account for the most variance in the carbon fluxes at both daily and hourly time scales in the three stands and they consistently and substantially outperformed the MLR model for both daily and hourly carbon flux estimates. It was demonstrated that the ANFIS and ANN models provided similar estimates in the testing period with an approximate value of R2 = 0.93, NSE = 0.91, Bias = 0.11 g C m−2 day−1 and RMSE = 1.04 g C m−2 day−1 for daily gross primary productivity, 0.94, 0.82, 0.24 g C m−2 day−1 and 0.72 g C m−2 day−1 for daily ecosystem respiration, and 0.79, 0.75, 0.14 g C m−2 day−1 and 0.89 g C m−2 day−1 for daily net ecosystem exchange, and slightly outperformed the GRNN and SVM models. In practical terms, however, the newly developed models (ANFIS and GRNN) are more robust and flexible, and have less parameters needed for selection and optimization in comparison with traditional ANN and SVM models. Consequently, they can be used as valuable tools to estimate forest carbon fluxes and fill the missing carbon flux data during the long-term EC measurements.


Sign in / Sign up

Export Citation Format

Share Document