scholarly journals Coaxial Probe Fed Modified Sierpinski Fractal Antenna for Wireless Applications

A modified Sierpinski fractal antenna has been designed for wireless applications. The designed antenna exhibits multiple resonance behavior due to the basic attributes of the fractal shapes. The proposed antenna has planar, compact in size and is suitable for various wireless applications. It is designed on the Flame Retardant epoxy board substrate (FR4), which is very easily available, light in weight and has less cost. IFS (Iterated Function System) methodology is accustomed to generate the complex fractal layout using the scripting methodology (.vbs) in the HFSS simulator. Scripting method provides a straight forward solution to generate complicated fractal structures by generating code in MATLAB. The proposed antenna resonates at five different frequencies 1.859 GHz, 3.623 GHz, 5.929 GHz, 9.095 GHz and 9.547 GHz with smart values of return loss up to - 26 dB. It additionally demonstrates good radiation properties and has VSWR values less than two for all resonating frequencies. Radiation characteristics are displayed by 2D and 3D radiation patterns. It also has an low profile value of Gain of 3 dB.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yaqeen S. Mezaal

AbstractEuclidean and fractal terms are mathematically and physically important terms in antenna design, but rarely reported studies had discussed these terms together in antenna design in their texts. This paper first gives an overview of Euclidean and fractal antennas with useful and satisfactory facts. Four printed slot antennas are then studied using Euclidean slot shapes printed in the ground plane with and without Euclidean patches using FR4 substrate. These antennas are employed to investigate their suitability as simple alternatives to complicated fractal geometries and their specific formulas. Parametric analyses with feedline lengths and patch scaling aspects are adopted to generate single, dual, and multiband responses. These parametric studies provide different outcomes and choices for antenna electrical specifications suitable for various wireless applications. It is clear that inserting Euclidean patches to the printed slot in the ground plane influence inducing multiple operating bands as similar as multiband fractal antenna, but without using specific formulas or complicated outlines. All proposed antennas have low-profile topologies, good compactness, and more competitive electrical specifications than many reported fractal antennas. The simulations of the proposed printed slot antennas are in good compatibility with the measurements.


A dual band low profile fractal antenna is proposed for Maritime Radio Navigation Services (MRNS). Minkowski fractal geometry is used on both the vertical boundaries of basic patch structure and by adjusting the fractal dimension desired operating frequency is achieved. The effect of antenna dimensions on the bandwidth is determined through the parametric analysis. Proposed antenna operates at 3 GHz and 9.4 GHz with a gain of 6.3 dB and 2.5 dB respectively. Furthermore, the resonating and radiation properties of the proposed antenna are measured experimentally. Measured results of the proposed antenna are highly convincing and in good agreement with simulated results.


Author(s):  
Amer T. Abed ◽  
Mahmood J. Abu-AlShaer ◽  
Aqeel M. Jawad

When the length of the antenna is less than a quarter of the wavelength of the operating frequency, good radiation properties are difficult to obtain. However, size limitations can be overcome in this case using a fractal geometry antenna. The shape is repeated in a limited size such that the total length of the antenna is increased to match, for example, half of the wavelength of the corresponding desired frequency. Many fractal geometries, e.g., the tree, Koch, Minkowski, and Hilbert fractals, are available. This chapter describes the details of designing, simulations, and experimental measurements of fractal antennas. Based on dimensional geometry in terms of desired frequency bands, the characteristics of each iteration are studied carefully to improve the process of designing the antennas. In depth, the surface current distribution is investigated and analyzed to enhance the circular polarization radiation and axial ratio bandwidth (ARBW). Both, simulation and experimental, results are discussed and compared. Two types of fractal antennas are proposed. The first proposed fractal antenna has a new structure configured via a five-stage process. The second proposed fractal antenna has a low profile, wherein the configuration of the antenna was based on three iterations.


2019 ◽  
Vol 12 (2) ◽  
pp. 95-100
Author(s):  
Purnima Sharma ◽  
Akshi Kotecha ◽  
Rama Choudhary ◽  
Partha Pratim Bhattacharya

Background: The Planar Inverted-F Antenna (PIFA) is most widely used for wireless communication applications due to its unique properties as low Specific Absorption Rate, low profile geometry and easy fabrication. In literature a number of multiband PIFA designs are available that support various wireless applications in mobile communication, satellite communication and radio frequency field. Methods: In this paper, a miniature sized planar inverted-F antenna has been proposed for dual-band operation. The antenna consists of an asymmetrical pentagonal shaped patch over an FR4 substrate. The overall antenna dimension is 10 × 10 × 3 mm3 and resonates at 5.7 GHz frequency. A modification is done in the patch structure by introducing an asymmetrical pentagon slot. Results: The proposed pentagonal antenna resonates at 5.7 GHz frequency. Further, modified antenna resonates at two bands. The lower band resonates at 5 GHz and having a bandwidth of 1.5 GHz. This band corresponds to C-band, which is suitable for satellite communication. The upper band is at 7.9 GHz with a bandwidth of 500 MHz. Performance parameters such as return loss, VSWR, input impedance and radiation pattern are obtained and analysed using ANSYS High- Frequency Structure Simulator. The radiation patterns obtained are directional, which are suitable for mobile communication. Conclusion: The antenna is compact in size and suitable for radar, satellite and vehicular communication.


2009 ◽  
Vol 147 (2) ◽  
pp. 455-488 ◽  
Author(s):  
R. D. MAULDIN ◽  
T. SZAREK ◽  
M. URBAŃSKI

AbstractWe deal with contracting finite and countably infinite iterated function systems acting on Polish spaces, and we introduce conformal Graph Directed Markov Systems on Polish spaces. Sufficient conditions are provided for the closure of limit sets to be compact, connected, or locally connected. Conformal measures, topological pressure, and Bowen's formula (determining the Hausdorff dimension of limit sets in dynamical terms) are introduced and established. We show that, unlike the Euclidean case, the Hausdorff measure of the limit set of a finite iterated function system may vanish. Investigating this issue in greater detail, we introduce the concept of geometrically perfect measures and provide sufficient conditions for geometric perfectness. Geometrical perfectness guarantees the Hausdorff measure of the limit set to be positive. As a by–product of the mainstream of our investigations we prove a 4r–covering theorem for all metric spaces. It enables us to establish appropriate co–Frostman type theorems.


Fractals ◽  
2015 ◽  
Vol 23 (04) ◽  
pp. 1550046
Author(s):  
D. LA TORRE ◽  
F. MENDIVIL

Given a continuous rectifiable function [Formula: see text], we present a simple Iterated Function System (IFS) with probabilities whose invariant measure is the normalized arclength measure on the graph of [Formula: see text].


2008 ◽  
Vol 392-394 ◽  
pp. 575-579
Author(s):  
Yu Hao Li ◽  
Jing Chun Feng ◽  
Y. Li ◽  
Yu Han Wang

Self-affine and stochastic affine transforms of R2 Iterated Function System (IFS) are investigated in this paper for manufacturing non-continuous objects in nature that exhibit fractal nature. A method for modeling and fabricating fractal bio-shapes using machining is presented. Tool path planning algorithm for numerical control machining is presented for the geometries generated by our fractal generation function. The tool path planning algorithm is implemented on a CNC machine, through executing limited number of iteration. This paper describes part of our ongoing research that attempts to break through the limitation of current CAD/CAM and CNC systems that are oriented to Euclidean geometry objects.


Sign in / Sign up

Export Citation Format

Share Document