scholarly journals Investigation of printed slot antennas based on Euclidean geometries

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yaqeen S. Mezaal

AbstractEuclidean and fractal terms are mathematically and physically important terms in antenna design, but rarely reported studies had discussed these terms together in antenna design in their texts. This paper first gives an overview of Euclidean and fractal antennas with useful and satisfactory facts. Four printed slot antennas are then studied using Euclidean slot shapes printed in the ground plane with and without Euclidean patches using FR4 substrate. These antennas are employed to investigate their suitability as simple alternatives to complicated fractal geometries and their specific formulas. Parametric analyses with feedline lengths and patch scaling aspects are adopted to generate single, dual, and multiband responses. These parametric studies provide different outcomes and choices for antenna electrical specifications suitable for various wireless applications. It is clear that inserting Euclidean patches to the printed slot in the ground plane influence inducing multiple operating bands as similar as multiband fractal antenna, but without using specific formulas or complicated outlines. All proposed antennas have low-profile topologies, good compactness, and more competitive electrical specifications than many reported fractal antennas. The simulations of the proposed printed slot antennas are in good compatibility with the measurements.

Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 651-655 ◽  
Author(s):  
Yilin Liu ◽  
Kama Huang

Abstract A novel design of a coplanar waveguide (CPW) feed antenna array with circular polarization (CP) and a high front-to-back ratio is described. The proposed CP array is achieved by using a compact CPW–slotline transition network etched in the ground plane. The measured results show that this kind of feeding method can improve the impedance bandwidth, as well as the axial ratio bandwidth of the CP antenna array and provide adequate gain. The proposed array can achieve a 6.08% impedance bandwidth and a 4.10% CP bandwidth. Details of the antenna design and experimental results are presented and discussed.


2017 ◽  
Vol 6 (3) ◽  
pp. 64
Author(s):  
R. Sahoo ◽  
D. Vakula

In this paper, a novel wideband conformal fractal antenna is proposed for GPS application. The concepts of fractal and partial ground are used in conformal antenna design for miniaturization and bandwidth enhancement. It comprises of Minkowski fractal patch on a substrate of Rogers RT/duroid 5880 with permittivity 2.2 and thickness of 0.787mm with microstrip inset feed. The proposed conformal antenna has a patch dimension about 0.39λmm×0.39λmm, and partial ground plane size is 29mm×90mm.The proposed antenna is simulated, fabricated and measured for both planar and conformal geometry, with good agreement between measurements and simulations. The size of the fractal patch is reduced approximately by 32% as compared with conventional patch. It is observed that the conformal antenna exhibits a fractional bandwidth(for the definition of -10dB) of 43.72% operating from 1.09 to 1.7GHz, which is useful for L1(1.56-1.58GHz), L2(1.21-1.23GHz), L3(1.37-1.39GHz), L4(1.36-1.38GHz), and L5(1.16-1.18 GHz) in GPS and Galileo frequencies: E=1589.742MHz(4MHzbandwidth), E2=1561. 098MHz(4MHzbandwidth), E5a=1176.45MHz(=L5),E5b= 1207.14MHz, and E6=1278.75MHz(40MHz bandwidth). The radiation pattern exhibits an omnidirectional pattern, and gain of proposed antenna is 2.3dBi to 3.5dBi within operating frequency range.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Chia-Hao Wu ◽  
Jwo-Shiun Sun ◽  
Bo-Shiun Lu

This paper presents a compact four-element multiple-input–multiple-output (MIMO) antenna design operating within the WiFi 802.11 ac bands (5.2–5.84 GHz) for a smartwatch. The antenna is fabricated using a polyamide substrate and embedded into the strap of a smartwatch model; the strap is created using three-dimensional etching of plastic materials. The four-element MIMO antenna is formed by four monopole antennas, has a simple structure, and is connected to the system ground plane of the smartwatch. Due to the stub and notched block between two antennas and the slit in the system ground, the four-element MIMO antenna exhibits favorable isolation. Moreover, the envelope correlation coefficient of the antennas is considerably lower than 0.005 in the operating band. The measured −6 dB impedance bandwidths of the four elements of the antenna (Ant1–Ant4) with the human wrist encompass the WiFi 802.11 ac range of 5.2–5.84 GHz; moreover, an isolation of more than 20 dB is achieved. The measured antenna efficiency with and without a phantom hand are 45%–55% and 93%–97%, respectively.


2016 ◽  
Vol 9 (5) ◽  
pp. 1191-1196 ◽  
Author(s):  
Yogesh Kumar Choukiker ◽  
Jagadish Chandra Mudiganti

A compact size hybrid fractal antenna is proposed for the application in wideband frequency range. The proposed antenna structure is the combination of Koch curve and self-affine fractal geometries. The Koch curve and self-affine geometries are optimized to achieve a wide bandwidth. The feed circuit is a microstrip line with a matching section over a rectangular ground plane. The measured impedance matching fractal bandwidth (S11 ≤ −10 dB) is 72.37% from 1.6 to 3.4 GHz. An acceptable agreement is obtained from the simulated and measured antenna performance parameters.


2019 ◽  
Vol 8 (2) ◽  
pp. 48-52 ◽  
Author(s):  
M. Yerlikaya ◽  
S. S. Gültekin ◽  
D. Uzer

In this study, a wideband low profile microstrip antenna design for C-band applications is presented. The proposed antenna consists of a monopol log periodic patch in the equilateral triangular dimensions with the microstrip line fed and a rectangular ground plane. The antenna has 9×19.8 mm2 overall size, thickness of 1.6 mm and 4.3 dielectric constant. According to the simulation results, the proposed antenna has a very wide bandwidth while operating in the frequency band of 4.25-7.95 GHz and 5 GHz resonance frequency. The proposed antenna was also prototyped on FR4 substrate with the 0.02 tangent loss and the measurement results were quite similar by the simulated results.


2016 ◽  
Vol 26 (04) ◽  
pp. 1750068 ◽  
Author(s):  
Jaspal Singh Khinda ◽  
Malay Ranjan Tripathy ◽  
Deepak Gambhir

A low-cost multi-edged rectangular microstrip fractal antenna (RMFA) yielding a huge bandwidth of 8.62[Formula: see text]GHz has been proposed in this paper. The proposed fractal antenna design constitutes a radiation patch, fed with 50[Formula: see text][Formula: see text] microstrip line and a partial ground plane. The partial ground plane is the combination of shapes of rectangle and three-point arc. The proposed antenna is simulated as well as fabricated. The simulated results using electromagnetic solver software and measured with vector network analyzer bench MS46322A are presented and compared. The various parameters such as return loss, voltage standing wave ratio (VSWR), antenna impedance, gain, directivity, group delay and phase of [Formula: see text], radiation efficiency and patterns are presented here. The depth of return loss is improved for a wide range of frequencies. The proposed fractal antenna is further extended to linear array to improve the gain and impedance bandwidth. The simulated and measured results prove the superiority of the proposed antenna.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Tohid Sedghi ◽  
Mahdi Jalali ◽  
Tohid Aribi

Novel and compact CPW-fed antennas are proposed comprised of a fractal patch and modified ground-plane. The ground-plane is truncated at the center and includes dielectric notches at its side to enhance the antenna’s impedance bandwidth. The dimensions of the notches effectively control the upper and lower band edges of the antenna. The optimized antenna operates across 2.95–12.81 GHz forS11≤-10 dB. Omnidirectional radiation pattern is achieved over the full UWB frequency range. The miniaturized antenna has a total size of14×18×1 mm3. The characteristics of the proposed antenna are suitable for UWB wireless communication requiring low profile antennas.


Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 54
Author(s):  
Sanae Azizi ◽  
Laurent Canale ◽  
Saida Ahyoud ◽  
Georges Zissis ◽  
Adel Asselman

This paper presents the design of a compact size band patch antenna for 5G wireless communications. This wideband antenna was designed on a glass substrate (12 × 11 × 2 mm3) and is optically transparent and compact. It consists of a radiation patch and a ground plane using AgHT-8 material. The antenna design comprises rectangular shaped branches optimized to attain the wideband characteristics. The calculated impedance bandwidth is 7.7% covering the frequency range of 25 to 27 GHz. A prototype of the antenna and various parameters such as return loss plot, gain plot, radiation pattern plot, and voltage standing wave ratio (VSWR) are presented and discussed. The simulated results of this antenna show that it is well suited for future 5G applications because of its transparency, flexibility, light weight, and wide achievable frequency bandwidth near the millimeter wave frequency band.


In this paper “Micro Strip Patch Antenna (F-MSPA)” based on fractal is proposed to perform operations over multiband for a specific time bound. This is designed specifically for “Wireless Power Transmission (WPT)” System which is light weight or it is low profile and light weight when implemented. The main aim of proposed methodology or design of antenna is attained by implementing the basic patch called as the rectangular patch, whose scope is till the third level. Based on this the shape of rectangular cuttings are obtained. The antenna is excited by the obtained or generated micro strip feed as the operations of antenna are performed over various frequency ranges between 1GHz to maximum of 5 GHz. The proposed method comprises of fractal antenna resonant with quad frequencies that ranges: 1.86GHz / 2.29GHz / 3.02GHz / 4.50GHz along with their generated loss values are 13.59dB / -23.66dB / -15.94dB / -15.69dB. Proposed antenna simulation is performed using Ansoft HFSSv13 a high frequency structure simulator.


Sign in / Sign up

Export Citation Format

Share Document