scholarly journals Effect of Crossover Probability on Performance of Genetic Algorithm in Scheduling of Parallel Machines for BI- Criteria Objectives

Optimization of multi objective function gain the importance in the scheduling process. Many classical techniques are available to address the multi objective functions but the solutions yield the unsatisfactory results when the problem becomes complex and large. Evolutionary algorithm would be the solution for such problems. Genetic algorithm is adaptive heuristic search algorithms and optimization techniques that mimic the process of natural evolution. Genetic algorithms are a very effective way of obtaining a reasonable solution quickly to a complex problem. The genetic algorithm operators such as selection method, crossover method, crossover probability, mutation operators and stopping criteria have an effect on obtaining the reasonably good solution and the computational time. Partially mapped crossover operators are used to solve the problem of the traveling salesman, planning and scheduling of the machines, etc., which are having a wide range of solutions. This paper presents the effect of crossover probability on the performance of the genetic algorithm for the bi-criteria objective function to obtain the best solution in a reasonable time. The simulation on a designed genetic algorithm was conducted with a crossover probability of 0.4 to 0.95 (with a step of 0.05) and 0.97, found that results were converging for the crossover probability of 0.6 with the computational time of 3.41 seconds.

Author(s):  
K. MALLIKARJUNA ◽  
V. VEERANNA ◽  
K.HEMACHANDRA REDDY

Single row layout is one of the most usually used layout patterns in industries, particularly in flexible manufacturing systems. Here actual sequencing of machine and arrangement of parts, no doubt, have a great influence on the throughput of the flexible manufacturing system i.e., (F.M.S). This paper discusses the single row layout design in flexible manufacturing system (F.M.S). This paper furnishes the design, development and testing of simulated annealing technique and genetic algorithm to solve the single row layout problem by considering multi-objective i.e., minimizing the make span of jobs on all machines and minimizing the total transportation cost. The various line layout problems are tested for performance of objective function with respect to computational time and number of iterations involved in GA and SA. A necessary code is generated in C++ and the code is run by the IDE tool in which C++ compiler used as plug in. This tool has Eclipse based features which affords the competency to figure, correct, steer, and sort out the tasks that use C++ as a programming language using Intel core i3-380M processor. The results of the different optimization algorithms (Genetic Algorithm and simulated annealing method) are compared and finally, we observed that GA provide optimum results than SA.


2018 ◽  
Vol 24 (3) ◽  
pp. 84
Author(s):  
Hassan Abdullah Kubba ◽  
Mounir Thamer Esmieel

Nowadays, the power plant is changing the power industry from a centralized and vertically integrated form into regional, competitive and functionally separate units. This is done with the future aims of increasing efficiency by better management and better employment of existing equipment and lower price of electricity to all types of customers while retaining a reliable system. This research is aimed to solve the optimal power flow (OPF) problem. The OPF is used to minimize the total generations fuel cost function. Optimal power flow may be single objective or multi objective function. In this thesis, an attempt is made to minimize the objective function with keeping the voltages magnitudes of all load buses, real output power of each generator bus and reactive power of each generator bus within their limits. The proposed method in this thesis is the Flexible Continuous Genetic Algorithm or in other words the Flexible Real-Coded Genetic Algorithm (RCGA) using the efficient GA's operators such as Rank Assignment (Weighted) Roulette Wheel Selection, Blending Method Recombination operator and Mutation Operator as well as Multi-Objective Minimization technique (MOM). This method has been tested and checked on the IEEE 30 buses test system and implemented on the 35-bus Super Iraqi National Grid (SING) system (400 KV). The results of OPF problem using IEEE 30 buses typical system has been compared with other researches.     


2021 ◽  
Vol 12 (3) ◽  
pp. 1-36
Author(s):  
Provas Kumar Roy ◽  
Moumita Pradhan ◽  
Tandra Pal

This article describes an efficient and reliable strategy for the scheduling of nonlinear multi-objective hydrothermal power systems using the grey wolf optimization (GWO) technique. Moreover, the theory of oppositional-based learning (OBL) is integrated with original GWO for further enhancing its convergence rate and solution accuracy. The constraints related to hydro and thermal plants and environmental aspects are also considered in this paper. To show its efficiency and effectiveness, the proposed GWO and OGWO algorithms are authenticated for the test system consisting of a multi-chain cascade of 4 hydro and 3 thermal units whose valve-point loading effects are also taken into account. Furthermore, statistical outcomes of the conventional heuristic approaches available in the literature are compared with the proposed GWO and OGWO approaches, and these methods give moderately better operational fuel cost and emission in less computational time.


Author(s):  
Tufan Dogruer ◽  
Mehmet Serhat Can

In this paper, a Fuzzy proportional–integral–derivative (Fuzzy PID) controller design is presented to improve the automatic voltage regulator (AVR) transient characteristics and increase the robustness of the AVR. Fuzzy PID controller parameters are determined by a genetic algorithm (GA)-based optimization method using a novel multi-objective function. The multi-objective function, which is important for tuning the controller parameters, obtains the optimal solution using the Integrated Time multiplied Absolute Error (ITAE) criterion and the peak value of the output response. The proposed method is tested on two AVR models with different parameters and compared with studies in the literature. It is observed that the proposed method improves the AVR transient response properties and is also robust to parameter changes.


2016 ◽  
Vol 25 (1) ◽  
pp. 30-40 ◽  
Author(s):  
Yu-guang Zhong

Hull assembly line balancing has significant impact on performance of shipbuilding system and is usually a multi-objective optimization problem. In this article, the primary objectives of the hull assembly line balancing are to minimize the number of workstations, to minimize the static load balancing index, to minimize the dynamic load balancing index between workstations, and to minimize the multi-station-associated complexity. Because this problem comes under combinatorial optimization category and is non-deterministic polynomial-time hard, an improved genetic algorithm simulated annealing is presented. In genetic algorithm simulated annealing, the task sequence numbers are used as chromosomes, and selection, crossover, and mutation operators only deal with the elements of task set instead of the ones of the problem space. In order to prevent the algorithm appearing early convergence or getting local optimal result, the simulated annealing algorithm is used to deal with the individuals. Meanwhile, the algorithm is embedded with the hierarchical scheduling tactics in order to solve the selection problem on optimal solution in the Pareto-optimal set. A number of benchmark problems are solved to prove the superior efficiency of the proposed algorithm. Finally, a case study of the optimization of a hull assembly line was given to illustrate the feasibility and effectiveness of the method.


2021 ◽  
pp. 1-24
Author(s):  
Amrit Kaur Bhullar ◽  
Ranjit Kaur ◽  
Swati Sondhi

Today optimization algorithms are widely used in every application to increase quality, quantity and efficiency of making products as well as to minimize the production cost. Most of the techniques applied on different applications try to satisfy more than one parameter of interest in the design problem. In doing so, an objective function based on weighted aggregation has been designed to fulfill multi-objective optimization (MOO). A lot of computational time and energy is wasted in tuning the value of weighting factor in terms of number of trials each having hundreds of iterations to achieve the optimum solution. To reduce such tedious practice of adjustment of weighting factor with multiple iterations, Fuzzy technique is proposed for auto-tuning of weighting factor in this paper that will benefit the researchers who are working upon optimization of their designed objectives using artificial intelligence techniques. This paper proposes MOO settlement method that does not require complex mathematical equations in order to simplify the weight finding problem of weighted aggregation objective function (WAOF). The results have been compared in terms of time and space efficiency to show the importance of Fuzzy-WAOF (F-WAOF). Further the results taken on Automatic Voltage Regulator (AVR) system for set point tracking, load disturbance, controller effort and modelling errors, prove the superior performance of the proposed method as compared to state of the art techniques.


2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Yunqing Rao ◽  
Dezhong Qi ◽  
Jinling Li

For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involvesncutting patterns formnon-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony—hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem.


Author(s):  
Narjes Timnak ◽  
Alireza Jahangirian

In this study, two new techniques are proposed for accelerating the multi-point optimization of an airfoil shape by genetic algorithms. In such multi-point evolutionary optimization, the objective function has to be evaluated several times more than a single-point optimization. Thus, excessive computational time is crucial in these problems particularly, when computational fluid dynamics is used for fitness function evaluation. Two new techniques of preadaptive range operator and adaptive mutation rate are proposed. An unstructured grid Navier–Stokes flow solver with a two-equation [Formula: see text] turbulence model is used to evaluate the objective function. The new methods are applied for optimum design of a transonic airfoil at two speed conditions. The results show that using the new methods can increase the aerodynamic efficiency of optimum airfoil at each operating condition with about 30% less computational time in comparison with the conventional genetic algorithm approach.


Author(s):  
Ferreira J. ◽  
Steiner M.

Logistic distribution involves many costs for organizations. Therefore, opportunities for optimization in this respect are always welcome. The purpose of this work is to present a methodology to provide a solution to a complexity task of optimization in Multi-objective Optimization for Green Vehicle Routing Problem (MOOGVRP). The methodology, illustrated using a case study (employee transport problem) and instances from the literature, was divided into three stages: Stage 1, “data treatment”, where the asymmetry of the routes to be formed and other particular features were addressed; Stage 2, “metaheuristic approaches” (hybrid or non-hybrid), used comparatively, more specifically: NSGA-II (Non-dominated Sorting Genetic Algorithm II), MOPSO (Multi-Objective Particle Swarm Optimization), which were compared with the new approaches proposed by the authors, CWNSGA-II (Clarke and Wright’s Savings with the Non-dominated Sorting Genetic Algorithm II) and CWTSNSGA-II (Clarke and Wright’s Savings, Tabu Search and Non-dominated Sorting Genetic Algorithm II); and, finally, Stage 3, “analysis of the results”, with a comparison of the algorithms. Using the same parameters as the current solution, an optimization of 5.2% was achieved for Objective Function 1 (OF{\displaystyle _{1}}; minimization of CO{\displaystyle _{2}} emissions) and 11.4% with regard to Objective Function 2 (OF{\displaystyle _{2}}; minimization of the difference in demand), with the proposed CWNSGA-II algorithm showing superiority over the others for the approached problem. Furthermore, a complementary scenario was tested, meeting the constraints required by the company concerning time limitation. For the instances from the literature, the CWNSGA-II and CWTSNSGA-II algorithms achieved superior results.


2018 ◽  
Vol 8 (11) ◽  
pp. 2253 ◽  
Author(s):  
Yang Xue

In many areas, such as mobile robots, video games and driverless vehicles, path planning has always attracted researchers’ attention. In the field of mobile robotics, the path planning problem is to plan one or more viable paths to the target location from the starting position within a given obstacle space. Evolutionary algorithms can effectively solve this problem. The non-dominated sorting genetic algorithm (NSGA-II) is currently recognized as one of the evolutionary algorithms with robust optimization capabilities and has solved various optimization problems. In this paper, NSGA-II is adopted to solve multi-objective path planning problems. Three objectives are introduced. Besides the usual selection, crossover and mutation operators, some practical operators are applied. Moreover, the parameters involved in the algorithm are studied. Additionally, another evolutionary algorithm and quality metrics are employed for examination. Comparison results demonstrate that non-dominated solutions obtained by the algorithm have good characteristics. Subsequently, the path corresponding to the knee point of non-dominated solutions is shown. The path is shorter, safer and smoother. This path can be adopted in the later decision-making process. Finally, the above research shows that the revised algorithm can effectively solve the multi-objective path planning problem in static environments.


Sign in / Sign up

Export Citation Format

Share Document