scholarly journals A Novel Planar Monopole Antenna with Truncated Ground Plane for Wireless Communication

In this paper, triple-band planar monopole Microstrip Antenna intended for different applications like Bluetooth, Wi-Fi, Wireless LAN (2.4 GHz), LTE 2500 band, WiMax (3.5 GHz), and a piece of C-band applications. The reception apparatus has been intended to work at different recurrence groups, for example, 2.25 – 2.5 GHz, 3.32 – 3.97 GHz, and 5.90 – 8.67 GHz individually. The proposed receiving antenna comprises of a planar monopole reception apparatus imprinted on RT/duroid 5880 substrate (through a general permittivity of 2.2 and loss tangent of 0.0009) and the base side printed with a truncated ground. The planar monopole reception apparatus has been viably structured and reproduced by utilizing Ansys-HFSS design tool. The component of the proposed receiving antenna is 40 × 28.4 × 1.575 mm3 . The reenacted outcome shows return loss, voltage standing wave ratio (VSWR), radiation pattern, and gain of the Antenna. Also, the truncated ground plane structure is straightforward, vigorous and possesses little space, building it appropriate for different applications.

A comb shaped microstrip antenna is designed by loading rectangular slots on the patch of the antenna. The antenna resonating at three different frequencies f1 = 5.35 GHz, f2 = 6.19 GHz and f3= 8.15 GHz. The designed antenna is simulated on High Frequency Structure Simulator software [HFSS] and the antenna is fabricated using substrate glass epoxy with dielectric constant 4.4 having dimension of 8x4x0.16 cms. The antenna shows good return loss, bandwidth and VSWR. Experimental results are observed using Vector Analyzer MS2037C/2.


2020 ◽  
Vol 14 (2) ◽  
pp. 104-110
Author(s):  
Mustafa Berkan Bicer

In this study, a coplanar waveguide-fed compact microstrip antenna design for applications operating at higher 5G bands was proposed. The antenna with the compact size of 8 x 12.2 mm2 on FR4 substrate, having the dielectric constant of 4.3 and the height of 1.55 mm, was considered. The dimensions of the radiating patch and ground plane were optimized with the use of artificial cooperative search (ACS) algorithm to provide the desired return loss performance of the designed antenna. The performance analysis was done by using full-wave electromagnetic package programs based on the method of moment (MoM) and the finite integration technique (FIT). The 10 dB bandwidth for return loss results obtained with the use of the computation methods show that the proposed antenna performs well for 5G applications operating in the 24.25 – 27.50 GHz, 26.50 – 29.50 GHz, 27.50 – 28.35 GHz and 37 – 40 GHz frequency bands.


This paper presents the fabrication of an octagonal fractal hybrid micro strip radiator patch antenna that operates over a frequency range of 1.5 GHz to 2GHz suitable for low frequency wireless and mobile applications. The radiator has a dimension of 85x85mm2 on the radiating side and 100x86mm2 ground plane. The model is fabricated on Fire Redundant4 substrate with thickness of 1.6mm over a 10x10mm2 dimension and uses coaxial feeding technique. The model is tested for its performance in the range of 1.5 to 2 GHz on the radiator test bench consists of MIC10 antenna trainer kit with an allowable frequency of up to 2GHz. The radiation characteristics shown are having good return loss and average gain of 39dB with omni directional radiation pattern. The size is to be optimized as the dimensions are very large compared to the usual requirements.


2018 ◽  
Vol 7 (3) ◽  
pp. 87-92 ◽  
Author(s):  
P. Khanna ◽  
A. Sharma ◽  
A. K. Singh ◽  
A. Kumar

A CPW – Fed octagonal ring shaped antenna for wideband operation is presented. The radiating patch of proposed octagonal ring antenna consists of symmetrical slot in place of conventional annular ring microstrip antenna. The ground plane consists of two rectangular slots, while the radiator and the ground plane are on same plane that utilizes the space available around the radiator. The proposed antenna is simulated through Ansoft’s High Frequency Structure Simulator (HFSS). Measured result shows balanced agreement with the simulated results. The prototype is taken with dimensions 47 mm × 47 mm × 1.6 mm that achieves good return loss, constant group delay and good radiation patterns over the entire operating bandwidth of 2.0 to 9.5 GHz (7.5 GHz). The proposed antenna achieves high impedance bandwidth of 130%. Thus, the proposed antenna is applicable for S and C band applications.


Author(s):  
Ajay V. G. ◽  
Parvathy A. R. ◽  
Thomaskutty Mathew

<span lang="EN-US">This paper reports a novel method for designing a miniaturized microstrip antenna with DGS based on CSRR array which operates in the frequency of 2.6GHz for low band WiMAX application. The proposed antenna is designed using ANSYS HFSS simulation software. The antenna with optimized parameters is fabricated using FR-4 substrate of thickness 1.6 mm. The simulated and measured performances of the antenna in terms of return loss, directivity and radiation patterns are presented in this work. When Complimentary Split Ring Resonators (CSRRs) array are placed on the ground plane, the resonant frequency is shifted  to a lower value and patch size is reduced .The measurements were taken and compared with the simulated results. The performance characteristics obtained from the measurements show that the proposed antenna is suited for WiMAX application at 2.6GHz.</span>


2018 ◽  
Vol 7 (5) ◽  
pp. 7-13 ◽  
Author(s):  
S. A. Shandal ◽  
Y. S. Mezaal ◽  
M. F. Mosleh ◽  
M. A. Kadim

In this paper, a pentagon slot inside fractal circular patch microstrip resonator to design compact antenna over partial ground plane is introduced using 3rd iteration of adopted fractal geometry. This antenna is modeled on FR4 substrate with a size of (20 x 18) mm2, thickness of 1.5mm, permittivity of 4.3 and loss tangent of 0.02. The used type of feeding is microstrip line feed. It is designed to operate at wide frequency range of (4.5-9.3) GHz at resonant frequencies of 5.7GHz and 7.9GHz with impedance bandwidth of 4.8 GHz. Both lengths of ground plane Lg and width of feed line Wf are optimized in order to acquire optimum bandwidth. The simulated return loss values are -33 and -41 dB at two resonant frequencies of 5.7 and 7.9 GHz with gain of 3.2 dB. The simulated results offered noteworthy compatibility with measured results. Also, the proposed wideband microstrip antenna has substantial compactness that can be integrated within numerous wireless devices and systems.


2010 ◽  
Vol 40-41 ◽  
pp. 384-387
Author(s):  
Xin Zhang ◽  
Lei Li

In this paper, a new ultrahigh frequency circularly polarized microstrip antenna using in RFID reader is proposed. The proposed antenna has a simple structure, it has non-symmetrical rectangular corner truncated square patch, ground plane and a probe feed. To achieve good circular polarization(CP) radiation characteristics, it uses air as the dielectric layer. Simulation results of a constructed prototype with the center operating frequency at 923 MHz showed that the antenna has a return loss S11 of about −24 dB, a gain level of about 9.48 dBi. The antenna has good impedance and radiation characteristics over the required bandwidth, 920-925 MHz (Chinese UHF RFID band).


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 677
Author(s):  
Elham A. Serria ◽  
Mousa I. Hussein

This study is addressing the slotted ring resonator effect on the performance of the ultra-wide band (UWB) microstrip antenna. Two types of metamaterial with double slotted ring resonators (SRR), circular (C-SRR) and square (S-SRR), are studied and implemented on back of the antenna. The design examines the effect of the number of the SRR and its position with respect to the antenna’s ground plane and the rotation of the inner and outer C-SRR rings on different antenna characteristics. The dimensions of the antenna are 45 mm × 31 mm × 1.27 mm. The implementation of the SRR increased the antenna bandwidth to cover the range from 2.2 GHz to 9.8 GHz with rejected bands and frequencies. Antenna simulated characteristics like return loss, maximum gain and radiation pattern are obtained utilizing HFSS. The return loss measurement and the VSWR of the antenna with all SRR configuration studied are in good agreement with simulated results.


2018 ◽  
Vol 7 (4) ◽  
pp. 85-92 ◽  
Author(s):  
S. Shandal ◽  
Y. S. Mezaal ◽  
M. Kadim ◽  
M. Mosleh

In this paper, a miniature rectangular microstrip antenna over partial ground plane is presented by utilizing a space-filling property of fractal geometry in this design. It is simulated by High Frequency Software Simulator (HFSS) software, fabricated and tested by Vector Network Analyzer (VNA).Two types of slots are introduced in order to enhance antenna parameters such as bandwidth and return loss S1.1. This antenna is fabricated on FR4 substrate with a small size of (18 x 16 x 1.5) mm3, 1.5mm substrate thickness, 4.3 permittivity and 0.02 loss tangent. To feed this antenna,  microstrip line feed is used. This antenna is implemented for wide bandwidth (4.8-11.6) GHz, and has three resonant frequencies at 5.5GHz, 8.3GHz and 10.7GHz with impedance bandwidth of 6.8GHz. The gap value g between partial ground plane and rectangular patch at top layer is optimized in order to achieve optimal simulated return loss S1.1 is (-46,-32,-14) dB at three resonant frequencies (5.5, 8.3, 10.7) GHz and optimal radiation efficiency of 93.42% with gain of 3.63dB. The simulated results have tolerable agreement with measured results. This antenna is suitable for wireless computer applications within  C and X band  communications.


Author(s):  
Priyanka Jain ◽  
Raghavendra Sharma ◽  
Vandana Vikas Thakre

In this proposed design a Rectangular E shaped micro-strip patch antenna is present with rectangular and circular slot within the Rectangular patch which operate at frequency 2.4 GHz. By proposed antenna design and coaxial feeding at suitable place  the resultant return loss, VSWR and bandwidth will be find out. For the propose microstrip antenna we have use FR-4 substrate which contain permittivity of 4.4 and thickness 1.5, loss tangent is 0.02. HFSS simulation software is used for designing and analysis.


Sign in / Sign up

Export Citation Format

Share Document