scholarly journals Conventional Concrete Mix Design for Producing the Low and High Volume of Fly Ash Based Fiber Reinforced Concrete

The present research work analysis the conceptual concrete mix design regarding the packing unit density concept for multi initial trial and error perfect shaped methodologies. In initial, a high strength based concrete with desired target compressive strength of M40 Graded concrete was shaped for various mixing proportion and Also, a stabilized standard chart has been developed for the various packing constituents (percentage) in various parameters, where the aggregates (F/c) ratio 0.5 to 0.8, Binder-Total aggregate (B/Ta) ratio 0.27 to 0.24 and water-binder content (w/b) ratio 0.30. The laboratory experimental research work results contain fly ash percentage replacement level at 25 and 50% in Portland cement and inclusion of both ends hooked type of steel fibers along with 1.50% of superplasticizers by weight of binder content for the various mix produced for the good tracking of the UPV values by using fabricating Plexiglas moulds, Pozzolanic Activity Index (PAI), if the compressive strength increases automatically less volumetric shrinkage takes place.

2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Julia Widia Nika ◽  
Anisah Anisah ◽  
Rosmawita Saleh

This research aims to utilize green mussel shell waste as a partial replacement for cement by establishing the best temperature that should be used to obtain the chemical substance if the sehell ashes to optimize the chemical substance for replacement of cement. This research replaces 10% of total weight cement with shell ash which has been combusted with a temperature of 700 ° C, 800 ° C and 900 ° C and control concrete. The compressive strength of the concrete plan is 20 MPa. Concrete mix design is 1:2:3. The results of this study indicate with subtitutes 10% semen with green shell ash with temperature 700 ° C, 800 ° C and 900 ° C is 20,53MPa; 16,76 MPa and 19,74 MPa and for control concrete has compressive strength 20,18 MPa. The maximum concrete compressive strength was obtained on the concrete of green shell ash with a combustion temperature of 700 ° C which is 20.53 MPa. In the concrete the green shells ash with a burning temperature above 700 ° C experience a decrease in compressive strength and cannot meet the compressive strength of the plan.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1256 ◽  
Author(s):  
Patryk Ziolkowski ◽  
Maciej Niedostatkiewicz

Concrete mix design is a complex and multistage process in which we try to find the best composition of ingredients to create good performing concrete. In contemporary literature, as well as in state-of-the-art corporate practice, there are some methods of concrete mix design, from which the most popular are methods derived from The Three Equation Method. One of the most important features of concrete is compressive strength, which determines the concrete class. Predictable compressive strength of concrete is essential for concrete structure utilisation and is the main feature of its safety and durability. Recently, machine learning is gaining significant attention and future predictions for this technology are even more promising. Data mining on large sets of data attracts attention since machine learning algorithms have achieved a level in which they can recognise patterns which are difficult to recognise by human cognitive skills. In our paper, we would like to utilise state-of-the-art achievements in machine learning techniques for concrete mix design. In our research, we prepared an extensive database of concrete recipes with the according destructive laboratory tests, which we used to feed the selected optimal architecture of an artificial neural network. We have translated the architecture of the artificial neural network into a mathematical equation that can be used in practical applications.


2018 ◽  
Vol 149 ◽  
pp. 01054
Author(s):  
Nadia Tebbal ◽  
Zine El Abidine Rahmouni ◽  
Lamis Rabiaa Chadi

The objective of this study is to analyze the effect of the air entrainment on the fresh rheological properties as well as on the compressive mechanical resistances of the mortars. The hardened concrete contains a certain amount of randomly spread air, coming either from a drive during kneading or from the evaporation of the mixing water. The air quantity is in the order of 20 l / m3, ie 2% of the volume. However, the presence of a large volume of air bubbles causes the mechanical resistances to fall in compression. On the other hand, the use of air entrainment could improve the rheological properties of fresh concrete. Experimental studies have been carried out to study the effect of air entrainment on compressive strength, density and ingredients of fresh concrete mix. During all the study, water cement ratio (w/c) was maintained constant at 0.5. The results have shown substantial decreasing in water and mortar density followed with decreasing in compressive strength of mortar. The results of this study has given more promising to use it as a guide for mortar mix design to choose the most appropriate concrete mix design economically.


This paper deals with the investigation of concrete containing varying replacement percentages of Alccofine and conjointly Alccofine and different proportions of steel fibers with aspect ratio 50 to investigate mechanical and morphological properties. The replacement levels of Alccofine was chosen as 5% to 15% with 5% increment and steel fibers of 0.5% to1.5% with an increment of 0.5% by volume of concrete. Mix design was done by using British D.O.E method, fixing water binder ratio as 0.45. Results indicated that concrete replaced with Alccofine in addition of steel fibers increased the compressive and flexural strength of concrete. The maximum strength was obtained for the concrete mix containing 15% Alccofine and 1.5% circular crimped steel fibers. Morphological studies indicated the excess C-S-H gel for concrete mixes containing Alccofine as compared to conventional concrete. Hence, it can be culminated that Alccofine and addition of steel fibers increases the strength properties and crack resistant strength of concrete.


Author(s):  
Nanang Budi Setyawan ◽  
Fredy Kurniawan

Development era of globalization has resulted in increasing number of second-hand goods / waste that its existence can be a problem for life in the future. Many things are done in order to recycle paper cement in order to overcome this problem the existence of waste. One way is to use waste paper to be a part of the building. The purpose of this study, to determine the compressive strength and optimum density. Laboratory experimental method uses a variation of 10%, 20%, 30% and testing conducted in the form of compressive strength and density. From the test results obtained by the result of decrease in the compressive strength and density. In addition cellulose concrete mix design with variations determined that 10%, 20%, 30% resulted in a decrease in the compressive strength of concrete,


2013 ◽  
Vol 701 ◽  
pp. 12-16 ◽  
Author(s):  
Mohd Irwan Juki ◽  
Khairunnisa Muhamad ◽  
Mahamad Mohd Khairil Annas ◽  
Koh Heng Boon ◽  
Norzila Othman ◽  
...  

This paper describes the experimental investigation to develop the concrete mix design Nomograph for concrete containing PET as fine aggregate. The physical and mechanical properties were determined by using mix proportion containing 25%, 50% and 75% of PET with water cement ratio (w/c) 0.45, 0.55 and 0.65. The data obtained showed that the inclusion of PET aggregate reduce the strength performances of concrete. All the data obtained were combined into one single graph to develop a preliminary mix design nomograph for PET concrete. The nomograph consist of ; relationship between compressive strength and water cement ratio; relationship between splitting tensile strength water cement ratio; relationship between splitting tensile strength and PET percentage and relationship between compressive strength and PET percentage. The mix design nomograph can be used to assists in selecting the proper mix proportion parameters based on the criteria required.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Ching-Yun Kao ◽  
Chin-Hung Shen ◽  
Jing-Chi Jan ◽  
Shih-Lin Hung

Pozzolanic concrete has superior properties, such as high strength and workability. The precise proportioning and modeling of the concrete mixture are important when considering its applications. There have been many efforts to develop computer-aided approaches for pozzolanic concrete mix design, such as artificial neural network- (ANN-) based approaches, but these approaches have proven to be somewhat difficult in practical engineering applications. This study develops a two-step computer-aided approach for pozzolanic concrete mix design. The first step is establishing a dataset of pozzolanic concrete mixture proportioning which conforms to American Concrete Institute code, consisting of experimental data collected from the literature as well as numerical data generated by computer program. In this step, ANNs are employed to establish the prediction models of compressive strength and the slump of the concrete. Sensitivity analysis of the ANN is used to evaluate the effect of inputs on the output of the ANN. The two ANN models are tested using data of experimental specimens made in laboratory for twelve different mixtures. The second step is classifying the dataset of pozzolanic concrete mixture proportioning. A classification method is utilized to categorize the dataset into 360 classes based on compressive strength, pozzolanic admixture replacement rate, and material cost. Thus, one can easily obtain mix solutions based on these factors. The results show that the proposed computer-aided approach is convenient for pozzolanic concrete mix design and practical for engineering applications.


Sign in / Sign up

Export Citation Format

Share Document