scholarly journals Implementation of GRNN for Evaluating the Pressure Drop and Heat Transfer in a Heat Exchanger by Utilizing Triple Elliptical Leaf Angle Strips with Same Orientation and Opposite Direction

Heat exchangers are the basic devices which are used in many areas wherever applications of heat flow occurs. Its usage varies from common domestic devices to mighty industrial applications. The performance of the heat exchanger shows a very important role for its utilization in many aspects. This performance is not dependent on the design parameters in a particular relationship hence experimental values for thermal performance are taken by utilizing three elliptical leaf strips in a tube and pipe heat exchanger. The three elliptical leaves used in experiment has major to minor axes ratios as 2:1 and distance of 50 mm between two leaves are arranged at different angular orientations from 00 to 1800 with 100 intervals. The leaves are placed in the tube side with same orientation and opposite direction of flow and experimentation is conducted to obtain the values. Based on these datasets available a statistical tool is utilized known as GRNN for the comparison between these obtained experimental values & GRNN values. From this comparison the percentage of error between the values is identified as result.

2019 ◽  
Vol 8 (3) ◽  
pp. 1781-1789

Heat exchangers are the basic devices which are used in many areas wherever applications of heat flow occurs. Its usage varies from common domestic devices to mighty industrial applications. The performance of the heat exchanger plays a very important role for its utilization in many aspects. This performance is not dependent on the design parameters in a particular relationship hence experimental values for thermal performance are taken by utilizing three elliptical leaf strips in a tube and pipe heat exchanger. The three elliptical leaves used in experiment has major to minor axes ratios as 2:1 and distance of 50 mm between two leaves are arranged at different angular orientations from 00 to 1800 with 100 intervals. The leaves are placed in the tube side with different orientation and opposite direction of flow and experimentation is conducted to obtain the values. Based on these datasets available a statistical tool is utilized known as GRNN for the comparison between these obtained experimental values & GRNN values. From this comparison the percentage of error between the values is identified as results


Heat exchangers are prominent industrial applications where engineering science of heat transfer and Mass transfer occurs. It is a contrivance where transfer of energy occurs to get output in the form of energy transfer. This paper aims at finding a solution to improve the thermal performance in a heat exchanger by using passive method techniques. This experimental and numerical analysis deals with finding the temperature outlets of cold and hot fluid for different mass flow rates and also pressure drop in the tube and the annular side by adding an elliptical leaf strip in the pipe at various angles. The single elliptical leaf used in experiment has major to minor axes ratios as 2:1 and distance of 50 mm between two leaves are arranged at different angular orientations from 0 0 to 1800 with 100 intervals. Since it’s not possible to find the heat transfer rates and pressure drops at every orientation of elliptical leaf so a generalized regression neural network (GRNN) prediction tool is used to get outputs with given inputs to avoid experimentation. GRNN is a statistical method of determining the relationship between dependent and independent variables. The values obtained from experimentation and GRNN nearly had precise values to each other. This analysis is a small step in regard with encomiastic approach for enhancement in performance of heat exchangers


Author(s):  
N. F. Timerbaev ◽  
A. K. Ali ◽  
Omar Abdulhadi Mustafa Almohamed ◽  
A. R. Koryakin

In this article, a mathematical simulation of a double pipe heat exchanger is carried out, having the longitudinal rectangular fins with the dimension of (2*3*1000) mm, mounted on the outer surface of the inner tube of the heat exchanger. In this paper, the advantage of using of that type of fins and its effect on the effectiveness of the heat exchanger are studied with the help of the computer program. The carried out research allowsmaking the calculation to find the optimum design parameters of heat exchangers. The outer tube diameter is (34.1mm) while the inner tube diameter is (16.05mm). The tubes wall thickness is (1.5mm) and the model length was (1 m). The hot water is flowing through the inner tube in parallel with the cold water that passing the outer tube. The hot and cold water temperature at the inlet is (75°C & 30°C) respectively. The mass flow rate inside the central pipe is (0.1 kg/s) while the annular pipe carrying (0.3 kg/s). In the present work, the program ANSYS Workbench 15.0 was used to find out the results of heat transfer as well as the behavior of liquids inside the heat exchangers.


Author(s):  
Soheil Soleimanikutanaei ◽  
Cheng-Xian Lin ◽  
Dexin Wang

Heat and water recovery using Transport Membrane Condenser (TMC) based heat exchangers is a promising technology in power generation industry. In this type of innovative heat exchangers the tube walls are made of a nano-porous material and have a high membrane selectivity which is able to extract condensate water from the flue gas in the presence of the other non-condensable gases such as CO2, O2 and N2. Considering the fact that for industrial applications, a matrix of TMC heat exchangers with several TMC modulus in the cross section or along the flow direction is necessary. Numerical simulation of multi-stage TMC heat exchanger units is of a great importance in terms of design, performance evaluation and optimization. In this work, performance of a two-stage TMC heat exchanger unit has been studied numerically using a multi-species transport model. In order to investigate the performance of the two-stage TMC heat exchanger unit, parametric study on the effect of transversal and longitudinal pitches in terms of heat transfer, pressure drop and condensation rate inside the heat exchangers have been carried out. The results indicate that the heat transfer and condensation rates both increase by reducing TMC tube pitches in the second stage and increasing the number of TMC tube pitches in the first stage of the units.


Author(s):  
A.A. Aleksandrov ◽  
I.V. Barmin ◽  
A.V. Zolin ◽  
V.V. Chugunkov

The paper describes the propellant cooling system using liquid nitrogen and a combination of recuperative heat exchangers, including sections of the double pipe heat exchanger and a twisted heat exchanger located in a tank with antifreeze, cooled by nitrogen gas coming out of the sections of the double pipe heat exchanger. Mathematical models of cooling processes for two variants of movement of propellant and liquid nitrogen in the channels of the double pipe heat exchanger sections are considered. Their using makes it possible to analyze the efficiency of propellant cooling operations depending on its mass, design parameters of the system tanks and heat exchangers, consumption characteristics of nitrogen and propellant, as well as to predict the required mass of liquid nitrogen and the time of propellant cooling during the operation of launching complex propellant-feed systems. Calculated dependences and simulation results of propellant and antifreeze cooling in a tank with a twisted heat exchanger are presented. The influence of variants of arranging propellant cooling processes and liquid nitrogen consumption on the efficiency of the cooling system is analyzed. Comparing to the available systems the capability of reducing the cost of liquid nitrogen are identified as well as reducing time of the propellant cooling operations by means of equipping launch complexes.


In our day to day hectic schedule humans have got so adaptive to technology that tremendous pressure is built on researchers to produce better equipment with greater output & easier way of human usage. One among these is Heat exchanger which is a device for trading heat and providing comfortable environment either for humans or the equipment .This paper aims at finding a solution in improvement of the thermal performance of the heat exchanger by implementing a statistical tool derived from Artificial Neural Network. The name of the tool is GRNN. (Generalized Regression Neural Network) From a sparse data of inputs (Temperatures, Angle orientation & mass flow rates) the outputs of (outlet temperatures & drop in pressure) are found out using this tool. An experiment is also conducted to find the heat transfer rates and pressure drops. To enhance the heat transfer rate three elliptical shaped leaf strips are introduced in the tube with opposite orientation and same direction. The results obtained from both the sources are compared and the percentage of error is calculated.


Author(s):  
Vitaliy Yaropud

Domestic and foreign scientists in recent years have performed a considerable amount of scientific research on the biological justification of optimal combinations of microclimate parameters required for the normal development of animals. However, the results of the studies do not allow one to specify the optimal parameters for different species of animals, taking into account their age, sex, weight and level of feeding. While it is possible to specify rather wide limits of change of temperature and relative humidity of air at which productivity is maximum, and technical and economic efficiency is approximately the same. Providing microclimate regulations in livestock premises is associated with significant costs of electricity and heat, which is about 17% of the producers' costs. To create a microclimate in livestock premises based on the above technological parameters and the analysis of the design features of the recuperators, two design and technological schemes of the three-pipe recuperator, which differ in the directions of movement of air flows, are proposed. The purpose of the research is to increase the efficiency of the technological process of functioning of the three-pipe recuperator for livestock premises by substantiating its structural and mode parameters. The results of theoretical studies of pneumatic losses in the three-pipe recuperator determined the dependence of pressure and power losses on the length of the air duct of the three-pipe recuperator, the radius of the external duct and the volume flow rate of air. As a result of theoretical studies, a mathematical model of the heat transfer process in a three-pipe heat exchanger was developed, with condensation in it, which allows to determine the temperature distribution of air flows by its length and its thermal capacity. The results of theoretical studies of the process of heat transfer in the design and technological schemes of a three-pipe recirculator with counter-current and direct-current showed that the counter-current variant is more effective. Optimization of the results of theoretical studies allowed us to determine the dependence of the design parameters of the three-pipe heat exchanger on the volumetric flow rate of air, subject to the highest useful thermal power.


Transferring heat from one fluid to another fluid without losing of major energy is a challenging task in the food processing and other industries. Double Pipe Heat Exchanger (DPHE) are light capacity Heat Exchangers (HE) used for air and other gas applications. In the present work an attempt is made to enhance the heat transfer of DPHE with helical fins and vortex generator. The working fluids are air and steam (water vapour) along outer and inner pipes. The parameters considered are helix angles, i.e. 350 , 400 , & 450 and pitch size i.e. 80 mm, 75 mm and 70 mm, and a vertex generator. CATIA V5 and Autodesk CFD are used for modelling and analysis. It is found that 400 angle helix fin 70 mm pitch along Delta Wing type (Triangular) vortex generator (VG) gives best performance


2021 ◽  
Vol 945 (1) ◽  
pp. 012058
Author(s):  
Sayshar Ram Nair ◽  
Cheen Sean Oon ◽  
Ming Kwang Tan ◽  
S.N. Kazi

Abstract Heat exchangers are important equipment with various industrial applications such as power plants, HVAC industry and chemical industries. Various fluids that are used as working fluid in the heat exchangers such as water, oil, and ethylene glycol. Researchers have conducted various studies and investigations to improve the heat exchanger be it from material or heat transfer point of view. There have been attempts to create mixtures with solid particles suspended. This invention had some drawbacks since the pressure drop was compromised, on top of the occurrence of sedimentation or even erosion, which incurs higher maintenance costs. A new class of colloidal suspension fluid that met the demands and characteristics of a heat exchanger was then created. This novel colloidal suspension mixture was then and now addressed as “nanofluid”. In this study, the usage of functionalized graphene nanoplatelet (GNP) nanofluids will be studied for its thermal conductivity within an annular conduit with angled fins, which encourage swirling flows. The simulation results for the chosen GNP nanofluid concentrations have shown an enhancement in thermal conductivity and heat transfer coefficient compared to the corresponding base fluid thermal properties. The data from this research is useful in industrial applications which involve heat exchangers with finned tubes.


2021 ◽  
Author(s):  
Avinash Kumar ◽  
Vinay Arya ◽  
Chirodeep Bakli

Abstract A numerical study is carried out to investigate the effect of porous fins in counter-flow Double Pipe Heat Exchanger (DPHE). Four DPHE with different porous fin arrangements is simulated for varying Darcy number, fin height, and the number of fins and compared with the conventional DPHE with no porous fins. The Darcy-Brinkman-Forchheimer equation is employed to model the flow in the porous fins considering fixed Re = 100. Al2O3-H2O nanofluid and water are used as hot and cold fluids respectively. Stainless steel is used as porous material with a porosity of 0.65. Results are evaluated in terms of effectiveness and Performance Evaluation Criterion (PEC). The effectiveness of the heat exchanger is used to analyze the heat transfer characteristics whereas the PEC is used to analyze the heat transfer characteristics considering pressure losses also. We evaluated maximum enhancement in thermal performance using effectiveness analysis and through PEC study we evaluated optimal effectiveness and corresponding design parameters. It is shown that utilizing porous fins in DPHE enhances the heat transfer by 134.3%. However, along with enhancement in heat transfer, the pressure losses also enhance which makes the application of porous fin non-viable. Therefore, using the PEC study we obtained optimal design parameters (Da = 10−3, hf = 4 cm, and n = 30) which adapts porous fin viable with enhancement in heat transfer by 66.38%.


Sign in / Sign up

Export Citation Format

Share Document