scholarly journals Behaviour of Bituminous Concrete Mixes with addition of Waste Plastic Bottle via Dry Process

The research work was carried out to investigate the behaviour of bituminous concrete mix with addition of waste plastic bottles made up of Polyethylene Terephthalate (PET) via dry process. Marshall moulds were prepared with bitumen content 5.0 to 5.8% (with 0.2% increment) and waste plastic content 0%, 4%, 6%, 8%, 10%, 12% and 14 % by weight of bitumen. Mechanical properties required for an ideal mix were determined. Results show that with increase in quantity of PET, mechanical properties of bituminous concrete mixes improve initially up to certain extent. The optimum bitumen content for conventional mixes was found to be 5.66%. Modified mix of 8% PET content with 5.40% bitumen content fulfils the requirements of modified mixes as per IRC SP-98, 2013 specifications. Bitumen content reduced to be 4.59% with addition of waste plastic bottle in bituminous concrete mixes. Hence, application of plastic waste in bituminous pavements is environmental friendly solution in terms of disposal of non-biodegradable waste plastic along with improvement in mechanical properties of bituminous mixes

2018 ◽  
Vol 7 (4.5) ◽  
pp. 396
Author(s):  
Brajesh Mishra ◽  
M. K. Gupta

The continuous increase in road traffic and heavy loading in combination with insufficient maintenance due to paucity of funds has resulted in deterioration of road network in India. To improve this proper maintenance, effective and improved roadway design, use of better quality materials and use of effective and modern construction techniques should be put into practice. During last three decades in many countries around the world it has been tested that modification of the bituminous binder with plastic/polymer additives enhances the properties and life of bituminous concrete pavements. The present investigation was carried out to propose the use of plastic coated aggregate (PCA) in bituminous mix of flexible pavements in order to improve their performance and also to give a way for safe disposal of plastic wastes in order to counter environmental pollution as well. There are mainly two processes available for incorporation of waste plastic in bituminous concrete mixes namely wet and dry process.  In this study the dry process was used for bituminous concrete mixes as it being simple and economical. Physical properties of conventional and plastic coated aggregates were compared. The Marshall method of mix design was adopted using VG-10 grade bitumen for conventional aggregates and plastic coated aggregates (PCA). Marshall Specimens were prepared at bitumen content ranging from 4% to 6% with a increment of 0.5% by weight of aggregates and with waste plastic content of 5%, 7%, 9%, 11%, 13% and 15% by weight of optimum bitumen content. Marshal stability, Flow value,  Air voids (Vv), Voids in mineral aggregates (VMA), and Voids filled with bitumen(VFB) were determined and compared with conventional aggregates (without plastic) bituminous concrete mixes. It was found that there was a reduction in consumption of bitumen in bituminous concrete mix by use of plastic coated aggregates also a considerable improvement in the properties of aggregates and bituminous concrete mix leading to provide longer life and improved pavement performance.   


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Dipankar Sarkar ◽  
Manish Pal ◽  
Ashoke K. Sarkar ◽  
Umesh Mishra

The paper describes an investigation into mechanical properties of brick-stone bituminous concrete mix. The effect of brick-stone mix on various mechanical properties of the bituminous concrete such as Marshall stability, flow, Marshall Quotient (stability to flow ratio), Indirect Tensile Strength, stripping, rutting, and fatigue life of bituminous concrete overlay has been evaluated. In this study over-burnt brick aggregate (OBBA) and stone aggregate (SA) have been mixed in different ratios (by weight) such as 20 : 80, 40 : 60, 60 : 40, and 80 : 20, respectively. The laboratory results indicate that bituminous concrete, prepared by 20% brick aggregate and 80% stone aggregate, gives the highest Marshall stability. This bituminous concrete mix shows considerable improvement in various mechanical properties of the mix as compared to the other mixes.


2018 ◽  
Vol 13 (1) ◽  
pp. 105-112
Author(s):  
Anurag V. Tiwari ◽  
Y. R. M. Rao

Abstract Waste plastic is accumulation all over the world causing serious environmental problems. This paper aims to study the Plastic Waste Mixed Bituminous Concrete Using Dry Process for Road Construction. The study evaluates the addition of shredded waste plastic in the bituminous concrete which results in significant increase in the stability value and Marshall Properties of mix. The study reveals that the use of waste plastic in bituminous concrete is safe and sustainable for road construction.


2018 ◽  
Vol 7 (1) ◽  
pp. 93-106
Author(s):  
Anurag V. Tiwari ◽  
Y R M Rao

Abstract The rutting and cracking of pavements has become very common problem in India. Also the quantity of plastic waste has significantly increased in the recent year due to industrialization and population growth. Improper disposal of these plastic wastes has caused various environmental problems, hence the alternative use of waste plastic in bituminous concrete for road construction has been encouraged by the community. In the present study the Indirect Tensile Strength Test has been carried out on Marshall Samples confirming to ASTM D6931-12. Three different processes (dry process, wet process and combined process) of mixing of waste plastic were used during experimentation. It was found that the indirect tensile strength (ITS) and tensile strength ratio (TSR) of sample significantly increase up to 8%, 6% and 12% for dry process, wet process and combined process respectively for LDPE and HDPE type of waste plastic.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chatree Homkhiew ◽  
Surasit Rawangwong ◽  
Worapong Boonchouytan ◽  
Wiriya Thongruang ◽  
Thanate Ratanawilai

The aim of this work is to investigate the effects of rubberwood sawdust (RWS) size and content as well as the ratio of natural rubber (NR)/high-density polyethylene (HDPE) blend on properties of RWS reinforced thermoplastic natural rubber (TPNR) composites. The addition of RWS about 30–50 wt% improved the modulus of the rupture and tensile strength of TPNR composites blending with NR/HDPE ratios of 60/40 and 50/50. TPNR composites reinforced with RWS 80 mesh yielded better tensile strength and modulus of rupture than the composites with RWS 40 mesh. The TPNR/RWS composites with larger HDPE content gave higher tensile, flexural, and Shore hardness properties and thermal stability as well as lower water absorption. The TPNR/RWS composites with larger plastic content were therefore suggested for applications requiring high performance of thermal, physical, and mechanical properties.


2015 ◽  
Vol 659 ◽  
pp. 659-665
Author(s):  
Supakit Chuaping ◽  
Thomas Mann ◽  
Rapeephun Dangtungee ◽  
Suchart Siengchin

The topic of this research work was to demonstrate the feasibility of a 3D-MID concept using injection molding technique and investigate the effects of two weld line types on the structure and mechanical properties such as tensile, flexural strength and morphology. In order to obtain more understanding of the bonds between polymer and metals, two different polymer bases of polyphthalamide (PPA) with the same type and amount of filler content were produced by injection molding at the different processing conditions. A mold was designed in such a way that weld and meld line can be produced with different angles by changing as insert inside of the mold. The mechanical properties such as stiffness, tensile strength and flexural strength were determined in tensile and flexural tests, respectively. The results showed in line with the expectation of high reduction on mechanical properties in area where weld/meld lines occurred. The result of tensile test was clearly seen that weld and meld line showed a considerable influence on mechanical properties. The reduction in tensile strength was approximately 58% according to weld line types, whereas in flexural strength was approximately 62%. On the other hand, the effect of the injection times and mold temperatures on the tensile strength were marginal.


2011 ◽  
Vol 268-270 ◽  
pp. 372-376 ◽  
Author(s):  
A. Chaboki-Khiabani ◽  
M. Bastami ◽  
M. Baghbadrani ◽  
M. Kordi

This paper presents the results of an experimental and statistical study on the effect of high temperatures on the retained mechanical properties of high-strength concretes (HSC). The mechanical properties of HSC significantly change during and later than exposure to elevated temperature. The compressive and splitting tensile strength of more than 400 HSC cylindrical specimens with sixteen mix proportion have investigated to study the effect of mix proportion on the retained mechanical properties of HSC specimens after heating. According to these results, a considerable loss was observed for all mixes and specimens in strength particularly in tensile splitting strength. In addition, these experimental data were investigated using Taguchi approach to find the effective parameters of mix proportion. Also, the most optimum mix proportion was found and checked experimentally. According to our results, by controlling some factors in the mix proportion, it is possible to reduce the retained destructive effects of elevated temperature on HSC specimens.


2016 ◽  
Vol 844 ◽  
pp. 38-45 ◽  
Author(s):  
Tatiana Liptáková ◽  
Martin Lovíšek ◽  
Branislav Hadzima

The Al-brasses are considered corrosion resistant construction materials often used to pipe systems in energy industry, where they are exposed to flowing liquids environments. In that system the brasses are loaded chemically and mechanically. The aim of our research work is to compare corrosion properties of four Al-brasses produced by different manufactures because in operation conditions they have dissimilar reliability and durability. The examined Al-brasses have similar chemical composition but differ in microstructure, surface state what affects their corrosion and mechanical properties. The effect of the mentioned parameters on corrosion and mechanical susceptibility to degradation are investigated by chosen experimental methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
R. Dharmaraj ◽  
G. K. Arunvivek ◽  
Alagar Karthick ◽  
V. Mohanavel ◽  
Bhagavathi Perumal ◽  
...  

Water is a crucial element in the concrete mix and is alone responsible for concrete work ability and cement hydration. The massive quantity of potable water consumed during the production of concrete is a concern. In general, fresh and hard concrete qualities are most influenced by the quantity and water quality. The use of magnetic water in concrete gives many benefits when it comes to increasing its properties. A substantial quantity of water can be saved by substituting potable water with magnetized water in concrete. In this study, the effects of magnetized water on the concrete's mechanical and durability properties were tested. Four different combinations were made using potable water and magnetic water. Mechanical properties including compression, flexural, tensile strength, and SEM analysis were evaluated. Water absorption, acid resistance, and corrosion resistance were all tested as part of the durability tests. According to the results of the experiments, employing magnetic water for concrete preparation and curing enhanced the mechanical properties and durability. Concrete mix MMMC prepared and subjected to curing using magnetized water has a 14.86% greater compressive strength than ordinary concrete. Similarly, tensile and flexural strength of mix MMMC amplified to 14.32% and 14.02%, respectively. Besides, the consumption of chemical admixtures also considerably reduced in magnetized water imbibed concrete.


Sign in / Sign up

Export Citation Format

Share Document